Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Elementary Particles and Fields and String Theory

Glue Spin And Helicity In The Proton From Lattice Qcd, Yi-Bo Yang, Raza Sabbir Sufian, Andrei Alexandru, Terrence Draper, Michael J. Glatzmaier, Keh-Fei Liu, Yong Zhao Mar 2017

Glue Spin And Helicity In The Proton From Lattice Qcd, Yi-Bo Yang, Raza Sabbir Sufian, Andrei Alexandru, Terrence Draper, Michael J. Glatzmaier, Keh-Fei Liu, Yong Zhao

Physics and Astronomy Faculty Publications

We report the first lattice QCD calculation of the glue spin in the nucleon. The lattice calculation is carried out with valence overlap fermions on 2 + 1 flavor domain-wall fermion gauge configurations on four lattice spacings and four volumes including an ensemble with physical values for the quark masses. The glue spin SG in the Coulomb gauge in the modified minimal subtraction (MS¯) scheme is obtained with one-loop perturbative matching. We find the results fairly insensitive to lattice spacing and quark masses. We also find that the proton momentum dependence of SG in the range 0 ≤ |p …


Locality And Efficient Evaluation Of Lattice Composite Fields: Overlap-Based Gauge Operators, Andrei Alexandru, Ivan Horváth Jan 2017

Locality And Efficient Evaluation Of Lattice Composite Fields: Overlap-Based Gauge Operators, Andrei Alexandru, Ivan Horváth

Physics and Astronomy Faculty Publications

We propose a novel general approach to locality of lattice composite fields, which in case of QCD involves locality in both quark and gauge degrees of freedom. The method is applied to gauge operators based on the overlap Dirac matrix elements, showing for the first time their local nature on realistic path-integral backgrounds. The framework entails a method for efficient evaluation of such nonultralocal operators, whose computational cost is volume independent at fixed accuracy, and only grows logarithmically as this accuracy approaches zero. This makes computation of useful operators, such as overlap-based topological density, practical. The key notion underlying these …


Role Of The Euclidean Signature In Lattice Calculations Of Quasidistributions And Other Nonlocal Matrix Elements, Raúl A. Briceño, Maxwell T. Hansen, Christopher J. Monahan Jan 2017

Role Of The Euclidean Signature In Lattice Calculations Of Quasidistributions And Other Nonlocal Matrix Elements, Raúl A. Briceño, Maxwell T. Hansen, Christopher J. Monahan

Physics Faculty Publications

Lattice quantum chromodynamics (QCD) provides the only known systematic, nonperturbative method for first-principles calculations of nucleon structure. However, for quantities such as light-front parton distribution functions (PDFs) and generalized parton distributions (GPDs), the restriction to Euclidean time prevents direct calculation of the desired observable. Recently, progress has been made in relating these quantities to matrix elements of spatially nonlocal, zero-time operators, referred to as quasidistributions. Still, even for these time-independent matrix elements, potential subtleties have been identified in the role of the Euclidean signature. In this work, we investigate the analytic behavior of spatially nonlocal correlation functions and demonstrate that …