Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Elementary Particles and Fields and String Theory

Extractable Entanglement From A Euclidean Hourglass, Takanori Anegawa, Norihiro Iizuka, Daniel Kabat Jan 2022

Extractable Entanglement From A Euclidean Hourglass, Takanori Anegawa, Norihiro Iizuka, Daniel Kabat

Publications and Research

We previously proposed that entanglement across a planar surface can be obtained from the partition function on a Euclidean hourglass geometry. Here we extend the prescription to spherical entangling surfaces in conformal field theory. We use the prescription to evaluate log terms in the entropy of a conformal field theory in two dimensions, a conformally coupled scalar in four dimensions, and a Maxwell field in four dimensions. For Maxwell we reproduce the extractable entropy obtained by Soni and Trivedi. We take this as evidence that the hourglass prescription provides a Euclidean technique for evaluating extractable entropy in quantum field theory.


Double Inclusive Small-X Gluon Production And Their Azimuthal Correlations In A Biased Ensemble, Gary Kapilevich Jan 2020

Double Inclusive Small-X Gluon Production And Their Azimuthal Correlations In A Biased Ensemble, Gary Kapilevich

Publications and Research

We consider double gg → g production in the presence of a bias on the unintegrated gluon distribution of the colliding hadrons or nuclei. Such bias could be due to the selection of configurations with a greater number of gluons or higher mean transverse momentum squared or, more generally, due to a modified spectral shape of the gluon distribution in the hadrons. Hence, we consider reweighted functional averages over the stochastic ensemble of small-x gluons. We evaluate explicitly the double inclusive gluon transverse momentum spectrum in high-energy collisions, and their azimuthal correlations, for a few simple examples of biases.


Graded Quivers, Generalized Dimer Models And Toric Geometry, Sebastián Franco, Azeem Hasan Nov 2019

Graded Quivers, Generalized Dimer Models And Toric Geometry, Sebastián Franco, Azeem Hasan

Publications and Research

The open string sector of the topological B-model on CY (m+2)-folds is described by m-graded quivers with superpotentials. This correspondence extends to general m the well known connection between CY (m+2)-folds and gauge theories on the world-volume of D(5-2m)-branes for m = 0, ..., 3. We introduce m-dimers, which fully encode the m-graded quivers and their superpotentials, in the case in which the CY (m+2)-folds are toric. Generalizing the well known m = 1,2 cases, m-dimers significantly simplify the connection between geometry and m-graded quivers. A key …


Master Integrals For The Two-Loop, Non-Planar Qcd Corrections To Top-Quark Pair Production In The Quark-Annihilation Channel, Matteo Becchetti, Roberto Bonciani, Valerio Casconi, Andrea Ferroglia, Simone Lavacca, Andreas Von Manteuffel Aug 2019

Master Integrals For The Two-Loop, Non-Planar Qcd Corrections To Top-Quark Pair Production In The Quark-Annihilation Channel, Matteo Becchetti, Roberto Bonciani, Valerio Casconi, Andrea Ferroglia, Simone Lavacca, Andreas Von Manteuffel

Publications and Research

We present the analytic calculation of the Master Integrals for the two-loop, non-planar topologies that enter the calculation of the amplitude for top-quark pair hadroproduction in the quark-annihilation channel. Using the method of differential equations, we expand the integrals in powers of the dimensional regulator ε and determine the expansion coefficients in terms of generalized harmonic polylogarithms of two dimensionless variables through to weight four.


Resummation For (Boosted) Top-Quark Pair Production At Nnlo+Nnll' In Qcd, Michał Czakon, Andrea Ferroglia, David Heymes, Alexander Mitov, Ben D. Pecjak, Darren J. Scott, Xing Wang, Li Lin Yang May 2018

Resummation For (Boosted) Top-Quark Pair Production At Nnlo+Nnll' In Qcd, Michał Czakon, Andrea Ferroglia, David Heymes, Alexander Mitov, Ben D. Pecjak, Darren J. Scott, Xing Wang, Li Lin Yang

Publications and Research

We construct predictions for top quark pair differential distributions at hadron colliders that combine state-of-the-art NNLO QCD calculations with double resummation at NNLL′ accuracy of threshold logarithms arising from soft gluon emissions and of small mass logarithms. This is the first time a resummed calculation at full NNLO+NNLL′ accuracy in QCD for a process with non-trivial color structure has been completed at the differential level. Of main interest to us is the stability of the $M_{t\bar{t}}$ and top-quark $p_T$ distributions in the boosted regime where fixed order calculations may become strongly dependent on the choice of dynamic scales. With the …


Higher Cluster Categories And Qft Dualities, Sebastián Franco, Gregg Musiker Jan 2018

Higher Cluster Categories And Qft Dualities, Sebastián Franco, Gregg Musiker

Publications and Research

We introduce a unified mathematical framework that elegantly describes minimally supersymmetry gauge theories in even dimensions, ranging from six dimensions to zero dimensions, and their dualities. This approach combines and extends recent developments on graded quivers with potentials, higher Ginzburg algebras, and higher cluster categories (also known as m-cluster categories). Quiver mutations studied in the context of mathematics precisely correspond to the order-(m + 1) dualities of the gauge theories. Our work indicates that these equivalences of quiver gauge theories sit inside an infinite family of such generalized dualities.


Octet Baryons In Large Magnetic Fields, Amol Deshmukh, Brian C. Tiburzi Jan 2018

Octet Baryons In Large Magnetic Fields, Amol Deshmukh, Brian C. Tiburzi

Publications and Research

Magnetic properties of octet baryons are investigated within the framework of chiral perturbation theory. Utilizing a power counting for large magnetic fields, the Landau levels of charged mesons are treated exactly giving rise to baryon energies that depend nonanalytically on the strength of the magnetic field. In the small-field limit, baryon magnetic moments and polarizabilities emerge from the calculated energies. We argue that the magnetic polarizabilities of hyperons provide a testing ground for potentially large contributions from decuplet pole diagrams. In external magnetic fields, such contributions manifest themselves through decuplet-octet mixing, for which possible results are compared in a few …


Prompt Photon-Jet Angular Correlations At Central Rapidities In P + A Collisions, Sanjin Benić, Adrian Dumitru Jan 2018

Prompt Photon-Jet Angular Correlations At Central Rapidities In P + A Collisions, Sanjin Benić, Adrian Dumitru

Publications and Research

Photon-jet azimuthal correlations in proton-nucleus collisions are a promising tool for gaining information on the gluon distribution of the nucleus in the regime of nonlinear color fields. We compute such correlations from the process $g → q\bar{q}γ$ in the rapidity regime where both the projectile and target light-cone momentum fractions are small. By integrating over the phase space of the quark which emits the photon, subject to the restriction that the photon picks up most of the transverse momentum (to pass an isolation cut), we effectively obtain a g + A process. For nearly back-to-back photon-jet configurations we …


Elliptic Genera Of 2d (0,2) Gauge Theories From Brane Brick Models, Sebastian Franco, Dongwook Ghim, Sangmin Lee, Rak-Kyeong Seong Jul 2017

Elliptic Genera Of 2d (0,2) Gauge Theories From Brane Brick Models, Sebastian Franco, Dongwook Ghim, Sangmin Lee, Rak-Kyeong Seong

Publications and Research

We compute the elliptic genus of abelian 2d (0, 2) gauge theories corresponding to brane brick models. These theories are worldvolume theories on a single D1-brane probing a toric Calabi-Yau 4-fold singularity. We identify a match with the elliptic genus of the non-linear sigma model on the same Calabi-Yau background, which is computed using a new localization formula. The matching implies that the quantum effects do not drastically alter the correspondence between the geometry and the 2d (0, 2) gauge theory. In theories whose matter sector suffers from abelian gauge anomaly, we propose an ansatz for an anomaly …