Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Condensed Matter Physics

Pyseg: A Python Package For 2d Material Flake Localization, Segmentation, And Thickness Prediction, Diana B. Horangic Dec 2022

Pyseg: A Python Package For 2d Material Flake Localization, Segmentation, And Thickness Prediction, Diana B. Horangic

Student Research Projects

Thin materials are of interest for their extraordinary physical, mechanical, thermal, electrical, and optical properties. Monolayers and bilayers of 2D materials can be manufactured through a variety of exfoliation methods. To determine layer thickness, Raman spectroscopy or other methods like Rayleigh scattering are used. These methods are, however, slow, and they require equipment beyond an optical microscope. A Python package that automates flake identification processes was built, with access solely to RGB data from an optical microscope assumed. My package, pyseg, localizes flakes on a substrate and then makes a rough estimate of their thickness from first principles. It can …


Modification Of Electronic Surface States By Graphene Islands On Cu(111), Shawna M. Hollen, G A. Gambrel, S J. Tjung, N M. Santagata, Ezekiel Johnston-Halperin, Jay A. Gupta May 2015

Modification Of Electronic Surface States By Graphene Islands On Cu(111), Shawna M. Hollen, G A. Gambrel, S J. Tjung, N M. Santagata, Ezekiel Johnston-Halperin, Jay A. Gupta

Physics & Astronomy

We present a study of graphene/substrate interactions on ultrahigh-vacuum-grown graphene islands with minimal surface contamination using in situ low-temperature scanning tunneling microscopy. We compare the physical and electronic structure of the sample surface with atomic spatial resolution on graphene islands versus regions of bare Cu(111) substrate. We find that the Rydberg-like series of image potential states is shifted toward lower energy over the graphene islands relative to Cu(111), indicating a decrease in the local work function, and the resonances have a much smaller linewidth, indicating reduced coupling to the bulk. In addition, we show the dispersion of the occupied Cu(111) …


Fate Of The Bose Insulator In The Limit Of Strong Localization And Low Cooper-Pair Density In Ultrathin Films, Shawna M. Hollen, G. E. Fernandes, J. M. Xu, J M. Valles Jr. Oct 2014

Fate Of The Bose Insulator In The Limit Of Strong Localization And Low Cooper-Pair Density In Ultrathin Films, Shawna M. Hollen, G. E. Fernandes, J. M. Xu, J M. Valles Jr.

Physics & Astronomy

A Bose insulator composed of a low density of strongly localized Cooper pairs develops at the two-dimensional superconductor to insulator transition (SIT) in a number of thin film systems. Investigations of ultrathin amorphous PbBi films far from the SIT described here provide evidence that the Bose insulator gives way to a second insulating phase with decreasing film thickness. At a critical film thickness dc the magnetoresistance changes sign from positive, as expected for boson transport, to negative, as expected for fermion transport, signs of local Cooper-pair phase coherence effects on transport vanish, and the transport activation energy exhibits a kink. …