Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Condensed Matter Physics

Non-Hermitian Topology Of One-Dimensional Spin-Torque Oscillator Arrays, Benedetta Flebus, Rembert A. Duine, Hilary M. Hurst Nov 2020

Non-Hermitian Topology Of One-Dimensional Spin-Torque Oscillator Arrays, Benedetta Flebus, Rembert A. Duine, Hilary M. Hurst

Faculty Research, Scholarly, and Creative Activity

Magnetic systems have been extensively studied both from a fundamental physics perspective and as building blocks for a variety of applications. Their topological properties, in particular those of excitations, remain relatively unexplored due to their inherently dissipative nature. The recent introduction of non-Hermitian topological classifications opens up new opportunities for engineering topological phases in dissipative systems. Here, we propose a magnonic realization of a non-Hermitian topological system. A crucial ingredient of our proposal is the injection of spin current into the magnetic system, which alters and can even change the sign of terms describing dissipation. We show that the magnetic …


Electron-Induced Massive Dynamics Of Magnetic Domain Walls, Hilary M. Hurst, Victor Galitski, Tero T. Heikkilä Feb 2020

Electron-Induced Massive Dynamics Of Magnetic Domain Walls, Hilary M. Hurst, Victor Galitski, Tero T. Heikkilä

Faculty Research, Scholarly, and Creative Activity

We study the dynamics of domain walls (DWs) in a metallic, ferromagnetic nanowire. We develop a Keldysh collective coordinate technique to describe the effect of conduction electrons on rigid magnetic structures. The effective Lagrangian and Langevin equations of motion for a DW are derived. The DW dynamics is described by two collective degrees of freedom: position and tilt-angle. The coupled Langevin equations therefore involve two correlated noise sources, leading to a generalized fluctuation-dissipation theorem (FDT). The DW response kernel due to electrons contains two parts: one related to dissipation via FDT, and another `inertial' part. We prove that the latter …


Transport Signatures Of Dirac States In Topological Insulator - Ferromagnet Heterostructures, Hilary M. Hurst Nov 2019

Transport Signatures Of Dirac States In Topological Insulator - Ferromagnet Heterostructures, Hilary M. Hurst

Faculty Research, Scholarly, and Creative Activity

No abstract provided.


Unconventional Pairing Symmetry Of Interacting Dirac Fermions On A Π -Flux Lattice, Huaiming Guo, Ehsan Khatami, Yao Wang, Thomas Devereaux, Rajiv Singh, Richard Scalettar Apr 2018

Unconventional Pairing Symmetry Of Interacting Dirac Fermions On A Π -Flux Lattice, Huaiming Guo, Ehsan Khatami, Yao Wang, Thomas Devereaux, Rajiv Singh, Richard Scalettar

Faculty Publications

The pairing symmetry of interacting Dirac fermions on the π-flux lattice is studied with the determinant quantum Monte Carlo and numerical linked-cluster expansion methods. The s∗- (i.e., extended s-) and d-wave pairing symmetries, which are distinct in the conventional square lattice, are degenerate under the Landau gauge. We demonstrate that the dominant pairing channel at strong interactions is an unconventional ds∗-wave phase consisting of alternating stripes of s∗- and d-wave phases. A complementary mean-field analysis shows that while the s∗- and d-wave symmetries individually have nodes in the energy spectrum, the ds∗ channel is fully gapped. The results represent a …


Unsupervised Machine Learning Account Of Magnetic Transitions In The Hubbard Model, Kelvin Ch'ng, Nick Vazquez, Ehsan Khatami Jan 2018

Unsupervised Machine Learning Account Of Magnetic Transitions In The Hubbard Model, Kelvin Ch'ng, Nick Vazquez, Ehsan Khatami

Faculty Publications

We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t-distributed stochastic neighboring ensemble (t-SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and …


Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. Chigvinadze, Juana Acrivos, S. Ashimov, D. Gulamova, G. Donadze Oct 2017

Superconductivity At Т≈200 K In Bismuth Cuprates Synthesized Using Solar Energy, J. Chigvinadze, Juana Acrivos, S. Ashimov, D. Gulamova, G. Donadze

Faculty Publications, Chemistry

When investigating low-frequency (0.1 Hz) oscillations of multiphase high-temperature cuprate superconductors (HTCS) Bi1,7Pb0,3Sr2Ca(n-1)CunOy (n=2-30), a wide attenuation peak (ΔT~100 К) with a maximum at Т≈200 К was detected. This peak was particularly pronounced in field cooling (FC) experiments, i.e. after abrupt cooling of the sample in the external magnetic field at the temperature Т<Тс with subsequent slow warming up to room temperature with invariance of the applied field. The attenuation peak height depended on the preliminaryorientation (before cooling) of the samples θ in the measured permanent magnetic field Н. On the one hand, it is well known that, after the FC procedure and subsequent slow warming up, at the temperatures close to the critical temperature Тс, the attenuation peak associated with “melting” of the Abrikosov frozen vortex structure and its disappearance at Т >Тс is detected in monophase samples. At the same time, in most multiphase bismuth HTCS samples, synthesized using solar energy and superfast quenching of the melt, the attenuation peak with the maximum at Т≈200 К was observed.Depending on the conditions of synthesis, the attenuation peak could …


Machine Learning Phases Of Strongly Correlated Fermions, Kelvin Ch'ng, Juan Carrasquilla, Roger Melko, Ehsan Khatami Aug 2017

Machine Learning Phases Of Strongly Correlated Fermions, Kelvin Ch'ng, Juan Carrasquilla, Roger Melko, Ehsan Khatami

Faculty Publications

Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural network machine learning techniques to distinguish finite-temperature phases of the strongly-correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling). We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. …


Kinetic Theory Of Dark Solitons With Tunable Friction, Hilary M. Hurst, Dimitry K. Efimkin, I. B. Spielman, Victor Galitski May 2017

Kinetic Theory Of Dark Solitons With Tunable Friction, Hilary M. Hurst, Dimitry K. Efimkin, I. B. Spielman, Victor Galitski

Faculty Research, Scholarly, and Creative Activity

We study controllable friction in a system consisting of a dark soliton in a one-dimensional Bose-Einstein condensate coupled to a non-interacting Fermi gas. The fermions act as impurity atoms, not part of the original condensate, that scatter off of the soliton. We study semi-classical dynamics of the dark soliton, a particle-like object with negative mass, and calculate its friction coefficient. Surprisingly, it depends periodically on the ratio of interspecies (impurity-condensate) to intraspecies (condensate-condensate) interaction strengths. By tuning this ratio, one can access a regime where the friction coefficient vanishes. We develop a general theory of stochastic dynamics for negative mass …


Brownian Motion Of Solitons In A Bose-Einstein Condensate, Lauren M. Aycock, Hilary M. Hurst, Dimitry K. Efimkin, Dina Genkina, Hsin-I Lu, Victor M. Galitski, I. B. Spielman Feb 2017

Brownian Motion Of Solitons In A Bose-Einstein Condensate, Lauren M. Aycock, Hilary M. Hurst, Dimitry K. Efimkin, Dina Genkina, Hsin-I Lu, Victor M. Galitski, I. B. Spielman

Faculty Research, Scholarly, and Creative Activity

We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated 87 Rb Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one-dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent …


Transport Of Dirac Electrons In A Random Magnetic Field In Topological Heterostructures, Hilary M. Hurst, Dimitry K. Efimkin, Victor Galitski Jun 2016

Transport Of Dirac Electrons In A Random Magnetic Field In Topological Heterostructures, Hilary M. Hurst, Dimitry K. Efimkin, Victor Galitski

Faculty Research, Scholarly, and Creative Activity

We consider the proximity effect between Dirac states at the surface of a topological insulator and a ferromagnet with easy plane anisotropy, which is described by the XY model and undergoes a Berezinskii-Kosterlitz-Thouless (BKT) phase transition. The surface states of the topological insulator interacting with classical magnetic fluctuations of the ferromagnet can be mapped onto the problem of Dirac fermions in a random magnetic field. However, this analogy is only partial in the presence of electron-hole asymmetry or warping of the Dirac dispersion, which results in screening of magnetic fluctuations. Scattering at magnetic fluctuations influences the behavior of the surface …


Observation Of Antiferromagnetic Correlations In The Hubbard Model With Ultracold Atoms, Russell Hart, Pedro Duarte, Tsung-Lin Yang, Xinxing Liu, Thereza Paiva, Ehsan Khatami, Richard Scalettar, Nandini Trivedi, David Huse, Randall Hulet Mar 2015

Observation Of Antiferromagnetic Correlations In The Hubbard Model With Ultracold Atoms, Russell Hart, Pedro Duarte, Tsung-Lin Yang, Xinxing Liu, Thereza Paiva, Ehsan Khatami, Richard Scalettar, Nandini Trivedi, David Huse, Randall Hulet

Faculty Publications

Ultracold atoms in optical lattices have great potential to contribute to a better understanding of some of the most important issues in many-body physics, such as high-temperature superconductivity. The Hubbard model—a simplified representation of fermions moving on a periodic lattice—is thought to describe the essential details of copper oxide superconductivity. This model describes many of the features shared by the copper oxides, including an interaction-driven Mott insulating state and an antiferromagnetic (AFM) state. Optical lattices filled with a two-spin-component Fermi gas of ultracold atoms can faithfully realize the Hubbard model with readily tunable parameters, and thus provide a platform for …


Charged Skyrmions On The Surface Of A Topological Insulator, Hilary M. Hurst, Dimitry K. Efimkin, Jiadong Zang, Victor Galitski Feb 2015

Charged Skyrmions On The Surface Of A Topological Insulator, Hilary M. Hurst, Dimitry K. Efimkin, Jiadong Zang, Victor Galitski

Faculty Research, Scholarly, and Creative Activity

We consider the interplay between magnetic skyrmions in an insulating thin film and the Dirac surface states of a 3D topological insulator (TI), coupled by proximity effect. The magnetic texture of skyrmions can lead to confinement of Dirac states at the skyrmion radius, where out of plane magnetization vanishes. This confinement can result in charging of the skyrmion texture. The presence of bound states is robust in an external magnetic field, which is needed to stabilize skyrmions. It is expected that for relevant experimental parameters skyrmions will have a few bound states that can be tuned using an external magnetic …