Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Physics

In Se 4 3

Articles 1 - 2 of 2

Full-Text Articles in Condensed Matter Physics

Indium Segregation To The Selvedge Of In4Se3 (001), Archit Dhingra, Zoe G. Marzouk, Esha Mishra, Pavlo V. Galiy, Taras M. Nenchuk, Peter Dowben Sep 2020

Indium Segregation To The Selvedge Of In4Se3 (001), Archit Dhingra, Zoe G. Marzouk, Esha Mishra, Pavlo V. Galiy, Taras M. Nenchuk, Peter Dowben

Peter Dowben Publications

Thermal motion of the surface atoms will lead to a decrease in photoemission intensity, while surface segregation may result in an increase of some phostoemission intensities. For In4Se3(001), both effects are seen. The Debye–Waller factor plot, based on the temperature dependent X-ray photoemission spectroscopy (XPS) measurements on In4Se3(001), suggests an upper bound of 203 ± 6 K for the effective Debye temperature, based on the surface component of the In 3d5/2 core-level. Indium is found to segregate to selvedge (subsurface region) of the crystal.


Surface Termination And Schottky-Barrier Formation Of In4Se3(001), Archit Dhingra, Pavlo V. Galiy, Lu Wang, Nataliia S. Vorobeva, Alexey Lipatov, Angel Torres, Taras M. Nenchuk, Simeon J. Gilbert, Alexander Sinitskii, Andrew J. Yost, Wai-Ning Mei, Keisuke Fukutani, Jia Shiang Chen, Peter Dowben Jun 2020

Surface Termination And Schottky-Barrier Formation Of In4Se3(001), Archit Dhingra, Pavlo V. Galiy, Lu Wang, Nataliia S. Vorobeva, Alexey Lipatov, Angel Torres, Taras M. Nenchuk, Simeon J. Gilbert, Alexander Sinitskii, Andrew J. Yost, Wai-Ning Mei, Keisuke Fukutani, Jia Shiang Chen, Peter Dowben

Peter Dowben Publications

The surface termination of In4Se3(001) and the interface of this layered trichalcogenide, with Au, was examined using x-ray photoemission spectroscopy. Low energy electron diffraction indicates that the surface is highly crystalline, but suggests an absence of C2v mirror plane symmetry. The surface termination of the In4Se3(001 is found, by angle-resolved x-ray photoemission spectroscopy, to be In, which is consistent with the observed Schottky barrier formation found with this n-type semiconductor. Transistor measurements confirm earlier results from photoemission, suggesting that In4Se3(001 is an n-type semiconductor, so that Schottky barrier …