Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Condensed Matter Physics

Chiral Magnetism And High-Temperature Skyrmions In B20-Ordered Co-Si, Balamurugan Balasubramanian, Priyanka Manchanda, Rabindra Pahari, Zhen Chen, Wenyong Zhang, Shah R. Valloppilly, Xingzhong Li, Anandakumar Sarella, Lanping Yue, Ahsan Ullah, Pratibha Dev, David A. Muller, Ralph Skomski, George C. Hadjipanayis, David J. Sellmyer Jan 2020

Chiral Magnetism And High-Temperature Skyrmions In B20-Ordered Co-Si, Balamurugan Balasubramanian, Priyanka Manchanda, Rabindra Pahari, Zhen Chen, Wenyong Zhang, Shah R. Valloppilly, Xingzhong Li, Anandakumar Sarella, Lanping Yue, Ahsan Ullah, Pratibha Dev, David A. Muller, Ralph Skomski, George C. Hadjipanayis, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Magnets with chiral crystal structures and helical spin structures have recently attracted much attention as potential spin-electronics materials, but their relatively low magnetic-ordering temperatures are a disadvantage. While cobalt has long been recognized as an element that promotes high-temperature magnetic ordering, most Co-rich alloys are achiral and exhibit collinear rather than helimagnetic order. Crystallographically, the B20-ordered compound CoSi is an exception due to its chiral structure, but it does not exhibit any kind of magnetic order. Here, we use nonequilibrium processing to produce B20-ordered Co1+xSi1−x with a maximum Co solubility of x = 0.043. Above a critical …


Svat4: A Computer Program For Visualization And Analysis Of Crystal Structures, Xingzhong Li Jan 2020

Svat4: A Computer Program For Visualization And Analysis Of Crystal Structures, Xingzhong Li

Nebraska Center for Materials and Nanoscience: Faculty Publications

SVAT4 is a computer program for interactive visualization of three-dimensional crystal structures, including chemical bonds and magnetic moments. A wide range of functions, e.g. revealing atomic layers and polyhedral clusters, are available for further structural analysis. Atomic sizes, colors, appearance, view directions and view modes (orthographic or perspective views) are adjustable. Customized work for the visualization and analysis can be saved and then reloaded. SVAT4 provides a template to simplify the process of preparation of a new data file. SVAT4 can generate high-quality images for publication and animations for presentations. The usability of SVAT4 is broadened by a software suite …


Rod-Shape Theranostic Nanoparticles Facilitate Antiretroviral Drug Biodistribution And Activity In Human Immunodeficiency Virus Susceptible Cells And Tissues, Bhavesh D. Kevadiya, Brendan Ottemann, Insiya Z. Mukadam, Laura Castellanos, Kristen Sikora, James R. Hilaire, Jatin Machhi, Jonathan Herskovitz, Dhruvkumar Soni, Mahmudul Hasan, Wenting Zhang, Anandakumar Sarella, Jered Garrison, Joellyn Mcmillan, Benson Edagwa, R. Lee Mosley, Richard W. Vachet, Howard E. Gendelman Jan 2020

Rod-Shape Theranostic Nanoparticles Facilitate Antiretroviral Drug Biodistribution And Activity In Human Immunodeficiency Virus Susceptible Cells And Tissues, Bhavesh D. Kevadiya, Brendan Ottemann, Insiya Z. Mukadam, Laura Castellanos, Kristen Sikora, James R. Hilaire, Jatin Machhi, Jonathan Herskovitz, Dhruvkumar Soni, Mahmudul Hasan, Wenting Zhang, Anandakumar Sarella, Jered Garrison, Joellyn Mcmillan, Benson Edagwa, R. Lee Mosley, Richard W. Vachet, Howard E. Gendelman

Nebraska Center for Materials and Nanoscience: Faculty Publications

Human immunodeficiency virus theranostics facilitates the development of long acting (LA) antiretroviral drugs (ARVs) by defining drug-particle cell depots. Optimal drug formulations are made possible based on precise particle composition, structure, shape and size. Through the creation of rod-shaped particles of defined sizes reflective of native LA drugs, theranostic probes can be deployed to measure particle-cell and tissue biodistribution, antiretroviral activities and drug retention.

Methods: Herein, we created multimodal rilpivirine (RPV) 177lutetium labeled bismuth sulfide nanorods (177LuBSNRs) then evaluated their structure, morphology, configuration, chemical composition, biological responses and adverse reactions. Particle biodistribution was analyzed by single …


Diffusion Doping Of Cobalt In Rod-Shape Anatase Tio2 Nanocrystals Leads To Antiferromagnetism†, Shahzahan Mia, Shelton J.P. Varapragasam, Aravind Baride, Choumini Balasanthiran, Balamurugan Balasubramanian, Robert M. Rioux, James D. Hoefelmeyer Jan 2020

Diffusion Doping Of Cobalt In Rod-Shape Anatase Tio2 Nanocrystals Leads To Antiferromagnetism†, Shahzahan Mia, Shelton J.P. Varapragasam, Aravind Baride, Choumini Balasanthiran, Balamurugan Balasubramanian, Robert M. Rioux, James D. Hoefelmeyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Cobalt(II) ions were adsorbed to the surface of rod-shape anatase TiO2 nanocrystals and subsequently heated to promote ion diffusion into the nanocrystal. After removal of any remaining surface bound cobalt, a sample consisting of strictly cobalt-doped TiO2 was obtained and characterized with powder Xray diffraction, transmission electron microscopy, UV-visible spectroscopy, fluorescence spectroscopy, X-ray photoelectron spectroscopy, SQUID magnetometry, and inductively-coupled plasma atomic emission spectroscopy. The nanocrystal morphology was unchanged in the process and no new crystal phases were detected. The concentration of cobalt in the doped samples linearly correlates with the initial loading of cobalt(II) ions on the nanocrystal surface. Thin …