Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Condensed Matter Physics

Surface Reconstruction In Iron Garnets, Sushree Dash Jan 2023

Surface Reconstruction In Iron Garnets, Sushree Dash

Dissertations, Master's Theses and Master's Reports

This dissertation presents the results of a study investigating the physical mechanisms underlying an unexpectedly large increase in magneto-optic efficiency observed in iron garnet. Such materials are technologically important for telecommunications due to their nonreciprocal optical action. In the past, our group had found evidence of an enhanced Faraday rotation in bismuth-substituted iron garnet films less than 50 nm thick. Subsequent investigation revealed that this enhancement could be traced to surface effects. This is significant because understanding these phenomena could be used to formulate engineering solutions for device miniaturization. In this dissertation, we present the result of a research project …


Emission Spectroscopy Of Ingaas Quantum Dots Via High-Resolution Fabry-Perot Interferometer, Raju Bhai Kc Jan 2023

Emission Spectroscopy Of Ingaas Quantum Dots Via High-Resolution Fabry-Perot Interferometer, Raju Bhai Kc

Graduate Theses, Dissertations, and Problem Reports

Single photons emitted from self-assembled quantum dots have been widely studied to use as a promising qubit for quantum information processing. Therefore, it is critical to fully understand the emission spectra from the quantum dot's excitation if we want to use a single photon as a quantum bit. It is almost impossible to produce rotationally symmetric quantum dots due to various growth conditions and restrictions. So the real quantum dots do not have a perfectly symmetric structure. A broken rotational symmetry causes an asymmetric exchange interaction between electron and hole, leading to a fine structure splitting between two excited states. …


Control Of Nonlinear Properties Of Van Der Waals Materials, Rezlind Bushati Sep 2022

Control Of Nonlinear Properties Of Van Der Waals Materials, Rezlind Bushati

Dissertations, Theses, and Capstone Projects

Van der Waals materials are a broad class of materials that exhibit unique optoelectronic properties. They provide a rich playground for which they can be integrated into current on-chip devices due to their nanometer-scale size, and be utilized for studying fundamental physics. Strong coupling of emitters to microcavities provides many opportunities for new exotic physics through the formation of hybrid quasi-particles exciton-polaritons. This thesis
focuses on exploring and enhancing nonlinearity of van der Waals materials through strongly coupling to microcavities. By taking advantage of the stacking order of TMDs, we show intense second-harmonic generation from bulk, centrosymmetric TMD systems. In …


Characterization And Coherent Spin Selective Manipulation Of Quantum Dot Energy Levels, Tristan Anthony Wilkinson Jan 2022

Characterization And Coherent Spin Selective Manipulation Of Quantum Dot Energy Levels, Tristan Anthony Wilkinson

Graduate Theses, Dissertations, and Problem Reports

Semiconductor quantum dots (QDs) are promising candidates to fulfill a wide range of applications in real-world quantum computing, communication, and networks. Their excellent optical properties such as high brightness, single-photon purity, and narrow linewidths show potential utility in many areas. In order to realize long term goals of integration into complex and scalable quantum information systems, many current challenges must be overcome. One of these challenges is accomplishment of all necessary computing operations within a QD, which might be enabled by coherent manipulation of single QD energy level structures. In the realm of scalability for quantum devices, a way to …


Charge Dynamics Of Inas Quantum Dots Under Resonant And Above-Band Excitation, Gary R. Lander Jr Jan 2022

Charge Dynamics Of Inas Quantum Dots Under Resonant And Above-Band Excitation, Gary R. Lander Jr

Graduate Theses, Dissertations, and Problem Reports

Research involving light-matter interactions in semiconductor nanostructures has been an interesting topic of investigation for decades. Many systems have been studied for not only probing fundamental physics of the solid state, but also for direct development of technological advancements. Research regarding self-assembled, epitaxially grown quantum dots (QDs) has proven to be prominent in both regards. The development of a reliable, robust source for the production of quantum bits to be utilized in quantum information protocols is a leading venture in the world of condensed matter and solid-state physics. Fluorescence from resonantly driven QDs is a promising candidate for the production …


Linear And Non Linear Properties Of Two-Dimensional Exciton-Polaritons, Mandeep Khatoniar Sep 2021

Linear And Non Linear Properties Of Two-Dimensional Exciton-Polaritons, Mandeep Khatoniar

Dissertations, Theses, and Capstone Projects

Technology has been accelerating at breakneck speed since the first quantum revolution, an era that ushered transistors and lasers in the late 1940s and early 1960s. Both of these technologies relied on a matured understanding of quantum theories and since their inception has propelled innovation and development in various sectors like communications, metrology, and sensing. Optical technologies were thought to be the game changers in terms of logic and computing operations, with the elevator pitch being "computing at speed of light", a fundamental speed limit imposed by this universe’s legal system (a.k.a physics). However, it was soon realized that that …


Spectroscopic Analysis Of Tungsten Oxide Thin Films For Sensor Applications, Jose Luis Enriquez Carrejo Jan 2010

Spectroscopic Analysis Of Tungsten Oxide Thin Films For Sensor Applications, Jose Luis Enriquez Carrejo

Open Access Theses & Dissertations

The objective of this study is targeted toward improving the quality of pure tungsten oxide (WO3) for application to the detection of poisoning gases, especially of H2S. While pure WO3 is a recognized candidate for gas sensing, its characteristics are strongly dependent on the conditions and methods used in its deposition.

Samples of WO3 thin films analyzed in this work were grown on silicon and sapphire substrates using RF magnetron sputtering at a number of different substrate temperatures and Ar:O2 pressure ratios. The properties of the samples were investigated spectroscopically with the goal of determining how variations in the above …