Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Optics

Articles

Holographic recording

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Condensed Matter Physics

Photopolymerizable Nanocomposites For Holographic Recording And Sensor Application, Elsa Leite, Izabela Naydenova, Svetlana Mintova, Louis Leclercq, Vincent Toal Jan 2010

Photopolymerizable Nanocomposites For Holographic Recording And Sensor Application, Elsa Leite, Izabela Naydenova, Svetlana Mintova, Louis Leclercq, Vincent Toal

Articles

Novel nanocomposites consisting of a water soluble acrylamide–based photopolymer and colloidal zeolite nanoparticles of zeolite Beta and zeolite A were prepared. The interactions between the photopolymer components and zeolite nanoparticles in the photopolymerizable nanocomposites were characterized for the first time by 13C NMR and Visible spectroscopy. It was found that the zeolite Beta nanoparticles (up to 5% wt.) behave as a non-inert additive, resulting in an effective increase in layer thickness that causes doubling of the diffraction efficiency of the nanocomposite in comparison to that of the undoped photopolymer. On the other hand, the nanocomposite containing zeolite A nanoparticles showed …


Two-Way Diffusion Model For Short Exposure Holographic Grating Formation In Acrylamide-Based Photopolymer, Tzvetanka Babeva, Izabela Naydenova, Dana Mackey, Suzanne Martin, Vincent Toal Jan 2010

Two-Way Diffusion Model For Short Exposure Holographic Grating Formation In Acrylamide-Based Photopolymer, Tzvetanka Babeva, Izabela Naydenova, Dana Mackey, Suzanne Martin, Vincent Toal

Articles

A theoretical model for formation of a short exposure holographic grating is presented. The model accounts for both monomer and polymer diffusion and distinguishes between short polymer chains capable of diffusing and long polymer chains that are immobile. It is shown that the experimentally observed decrease of diffraction efficiency at higher spatial frequency can be predicted by assuming diffusion of short-chain polymers away from the bright fringes. The time evolution of the refractive index modulation after short exposure is calculated and compared with experimental results. The effects of diffusion coefficients, polymerization rates, intensity and spatial frequency of recording on the …


A Diffusion Model For Spatially Dependent Photopolymerization, Dana Mackey, Tzvetanka Babeva, Izabela Naydenova, Vincent Toal Jan 2010

A Diffusion Model For Spatially Dependent Photopolymerization, Dana Mackey, Tzvetanka Babeva, Izabela Naydenova, Vincent Toal

Articles

Photopolymers represent an attractive class of optical recording materials due to properties such as high refractive index modulation, dry film processing, long shelf life, etc. Applications include holographically based devices for optical storage disks, optical interconnections, optical memories and filters. This paper will address the dynamics of short-exposure holographic grating formation; a new mathematical model is proposed with the aim of understanding the experimental observations of low diffraction efficiency in high spatial frequency gratings.


Investigation Of The Diffusion Processes In Self-Processing Acrylamide-Based Photopolymer System, Izabela Naydenova, Raghavendra Jallapuram, Robert Howard, Suzanne Martin, Vincent Toal May 2004

Investigation Of The Diffusion Processes In Self-Processing Acrylamide-Based Photopolymer System, Izabela Naydenova, Raghavendra Jallapuram, Robert Howard, Suzanne Martin, Vincent Toal

Articles

Results from the investigation of the diffusion processes in a dry acrylamide-based photopolymer system are presented. The investigation is carried out in the context of experimental work on optimization of the high spatial frequency response of the photopolymer. Tracing the transmission holographic grating dynamics at short times of exposure is utilized to measure diffusion coefficients. The results reveal that two different diffusion processes contribute with opposite sign to the refractive index modulation responsible for the diffraction grating build up. Monomer diffusion from dark to bright fringe areas increases the refractive index modulation. It is characterized with diffusion constant D0=1.6E-7 cm2/s. …