Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Condensed Matter Physics

Evolution Of Network Architecture In A Granular Material Under Compression, Lia Papadopoulous, James G. Puckett, Karen E. Daniels, Danielle S. Bassett Sep 2016

Evolution Of Network Architecture In A Granular Material Under Compression, Lia Papadopoulous, James G. Puckett, Karen E. Daniels, Danielle S. Bassett

Physics and Astronomy Faculty Publications

As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying …


Local Writing Of Exchange Biased Domains In A Heterostructure Of Co/Pd Pinned By Magnetoelectric Chromia, Uday Singh, William Echtenkamp, M. Street, Christian Binek, Shireen Adenwalla Sep 2016

Local Writing Of Exchange Biased Domains In A Heterostructure Of Co/Pd Pinned By Magnetoelectric Chromia, Uday Singh, William Echtenkamp, M. Street, Christian Binek, Shireen Adenwalla

Shireen Adenwalla Papers

The writing of micrometer-scaled exchange bias domains by local, laser heating of a thin-film heterostructure consisting of a perpendicular anisotropic ferromagnetic Co/Pd multilayer and a (0001) oriented film of the magnetoelectric antiferromagnet Cr2O3 (chromia) is reported. Exchange coupling between chromia’s boundary magnetization and the ferromagnet leads to perpendicular exchange bias. Focused scanning magneto-optical Kerr measurements are used to measure local hysteresis loops and create a map of the exchange bias distribution as a function of the local boundary magnetization imprinted in the antiferromagnetic pinning layer on field cooling. The robust boundary magnetization of the Cr2O …


Structure And Magnetism Of New Rare- Earth-Free Intermetallic Compounds: Fe3+Xco3−Xti2 (0 ≤ X ≤ 3), Balamurugan Balamurugan, Bhaskar Das, Manh Cuong Ngyuen, Xiaoshan Xu, Jie Zhang, Xiaozhe Zhang, Yaohua Liu, Ashfia Huq, Shah R. Valloppilly, Yunlong Jin, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer Jan 2016

Structure And Magnetism Of New Rare- Earth-Free Intermetallic Compounds: Fe3+Xco3−Xti2 (0 ≤ X ≤ 3), Balamurugan Balamurugan, Bhaskar Das, Manh Cuong Ngyuen, Xiaoshan Xu, Jie Zhang, Xiaozhe Zhang, Yaohua Liu, Ashfia Huq, Shah R. Valloppilly, Yunlong Jin, Cai-Zhuang Wang, Kai-Ming Ho, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

We report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe3Co3Ti2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe3Co3Ti2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Co in the Fe3Co3Ti2 lattice leads to the formation of Fe4Co2Ti2 , Fe5CoTi, and Fe6Ti2 with significantly improved …


The Metal/Organic Interface In Cobalt/Vinylidene Fluoride Heterostructures, Keith Foreman, E Echeverria, Mark A. Koten, R. M. Lindsay, N. Hong, Jeffrey E. Shield, Shireen Adenwalla Jan 2016

The Metal/Organic Interface In Cobalt/Vinylidene Fluoride Heterostructures, Keith Foreman, E Echeverria, Mark A. Koten, R. M. Lindsay, N. Hong, Jeffrey E. Shield, Shireen Adenwalla

Shireen Adenwalla Papers

Organic-based electronic devices are rapidly increasing in popularity, making it essential to understand and characterize the interface between organic materials and metallic electrodes. This work reports on the characterization of the interface between thin films of an emerging organic ferroelectric, vinylidene fluoride (VDF) oligomer, and Co, an important high Curie temperature ferromagnet. Using a wide battery of experimental techniques, it is shown that VDF oligomer thin films as thin as 15 nm can halt, or prevent, Co oxidization in atmospheric conditions, a necessary condition for device applications. Selectivity of magnetic properties, such as remanent magnetization, is enabled by the clarification …


Ferroelectric Characterization And Growth Optimization Of Thermally Evaporated Vinylidene Fluoride Thin Films, Keith Foreman, N. Hong, C. Labedz, C. Shearer, Stephen Ducharme, Shireen Adenwalla Jan 2016

Ferroelectric Characterization And Growth Optimization Of Thermally Evaporated Vinylidene Fluoride Thin Films, Keith Foreman, N. Hong, C. Labedz, C. Shearer, Stephen Ducharme, Shireen Adenwalla

Shireen Adenwalla Papers

Organic thin films have numerous advantages over inorganics in device processing and price. The large polarization of the organic ferroelectric oligomer vinylidene fluoride (VDF) could prove useful for both device applications and the investigation of fundamental physical phenomena. A VDF oligomer thin film vacuum deposition process, such as thermal evaporation, preserves film and interface cleanliness, but is challenging, with successful deposition occurring only within a narrow parameter space. We report on the optimal deposition parameters for VDF oligomer thin films, refining the parameter space for successful deposition, resulting in a high yield of robust ferroelectric films. In particular, we investigate …


Electron Diffraction Study Of Cobalt-Rich Hf-Co, Xingzhong Li, Yunlong Jin, Jeffrey E. Shield, Ralph Skomski, David J. Sellmyer Jan 2016

Electron Diffraction Study Of Cobalt-Rich Hf-Co, Xingzhong Li, Yunlong Jin, Jeffrey E. Shield, Ralph Skomski, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Intermetallic compounds having compositions from HfCo4 to HfCo8 were investigated by transmission electron microscopy, selected-area electron diffraction, and energy-dispersive x-ray spectroscopy. A major crystalline phase, closely related to the orthorhombic Zr2Co11 phase in structure, has been observed in the samples with the composition ranges from HfCo6 to HfCo8. The phase, referred to as either Hf2Co11 or HfCo7 phase in the literature, is actually one common phase, having a broad composition range and referred to as μ-phase in the present paper. In addition to the μ-phase, we …


Low-Temperature Fcc To L10 Phase Transformation In Copt(Bi) Nanoparticles, Frank M. Abel, Vasilis Tzitzios, David J. Sellmeyer, George C. Hadjipanayis Jan 2016

Low-Temperature Fcc To L10 Phase Transformation In Copt(Bi) Nanoparticles, Frank M. Abel, Vasilis Tzitzios, David J. Sellmeyer, George C. Hadjipanayis

Nebraska Center for Materials and Nanoscience: Faculty Publications

This work is focused on the effects of Bi substitution on the synthesis of CoPt nanoparticles with the L10 structure using a modified organometallic approach. The structural and magnetic properties of the nanoparticles have been studied and compared directly with those of CoPt nanoparticles synthesized by the same tech- nique but in the absence of Bi substitution. The as-synthesized particles at 330 ◦C have an average size of 11.7 nm and a partially ordered L10 phase with a coercivity of 1 kOe. The coercivity is increased to 9.3 kOe and 12.4 kOe after annealing for 1 hour at 600 …


Domain Wall Conductivity In Semiconducting Hexagonal Ferroelectric Tbmno3 Thin Films, D. J. Kim, J. G. Connell, S. S. A. Seo, Alexei Gruverman Jan 2016

Domain Wall Conductivity In Semiconducting Hexagonal Ferroelectric Tbmno3 Thin Films, D. J. Kim, J. G. Connell, S. S. A. Seo, Alexei Gruverman

Alexei Gruverman Publications

Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO3 and Pb(Zr,Ti)O3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO3 films is …


Phase Separation In Lufeo3 Films, Shi Cao, Xiaozhe Zhang, Kishan Sinha, Wenbin Wang, Jian Wang, Peter A. Dowben, Xiaoshan Xu Jan 2016

Phase Separation In Lufeo3 Films, Shi Cao, Xiaozhe Zhang, Kishan Sinha, Wenbin Wang, Jian Wang, Peter A. Dowben, Xiaoshan Xu

Peter Dowben Publications

The structural transition at about 1000°C, from the hexagonal to the orthorhombic phase of LuFeO3, has been investigated in thin films of LuFeO3. Separation of the two structural phases of LuFeO3 occurs on a length scale of micrometer, as visualized in real space using X-ray photoemission electron microscopy. The results are consistent with X-ray diffraction and atomic force microscopy obtained from LuFeO3 thin films undergoing the irreversible structural transition from the hexagonal to the orthorhombic phase of LuFeO3, at elevated temperatures. The sharp phase boundaries between the structural phases are observed to …


Influence Of Steric Hindrance On The Molecular Packing And The Anchoring Of Quinonoid Zwitterions On Gold Surfaces, Minghui Yuan, Iori Tababe, Jean-Marie Bernard- Schaaf, Qin-Yin Shi, Vicki Schlegel, Rachel Schurhammer, Peter A. Dowben, Bernard Doudin, Lucie Routaboul, Pierre Braunstein Jan 2016

Influence Of Steric Hindrance On The Molecular Packing And The Anchoring Of Quinonoid Zwitterions On Gold Surfaces, Minghui Yuan, Iori Tababe, Jean-Marie Bernard- Schaaf, Qin-Yin Shi, Vicki Schlegel, Rachel Schurhammer, Peter A. Dowben, Bernard Doudin, Lucie Routaboul, Pierre Braunstein

Peter Dowben Publications

Driven by the huge potential of engineering the molecular band offset with highly dipolar molecules for improving charge injection into organic electrics, the anchoring of various N-alkyl substituted quinonoid zwitterions of formula C6H2 (···NHR)2 (···O)2 (R = iPr, Cy, CH2CH(Et)CH2CH2CH2CH3,. . .) on gold surfaces is studied. The N–Au interactions result in an orthogonal arrangement of the zwitterions cores with respect to the surface, and stabilize adsorbed compact rows of molecules. IR spectroscopy is used as a straightforward diagnostic tool to validate the presence of …


Scaling Of Electroresistance Effect In Fully Integrated Ferroelectric Tunnel Junctions, Mohammad Abuwasib, Haidong Lu, Tao Li, Pratyush Buragohain, Hyungwoo Lee, Chang-Beom Eom, Alexei Gruverman, Uttam Singisetti Jan 2016

Scaling Of Electroresistance Effect In Fully Integrated Ferroelectric Tunnel Junctions, Mohammad Abuwasib, Haidong Lu, Tao Li, Pratyush Buragohain, Hyungwoo Lee, Chang-Beom Eom, Alexei Gruverman, Uttam Singisetti

Alexei Gruverman Publications

Systematic investigation of the scalability for tunneling electroresistance (TER) of integrated Co/BaTiO3/SrRuO3 ferroelectric tunnel junctions (FTJs) has been performed from micron to deep submicron dimensions. Pulsed measurements of the transient currents confirm the ferroelectric switching behavior of the FTJs, while the hysteresis loops measured by means of piezoresponse force microscopy verify the scalability of these structures. Fully integrated functional FTJ devices with the size of 300×300 nm2 exhibiting a tunneling electroresistance (TER) effect of the order of 2.7×104% have been fabricated and tested. Measured current density of 75 A/cm2 for the ON state …


Modification Of The G-Phonon Mode Of Graphene By Nitrogen Doping, Pavel V. Lukashev, Liuyan Zhao, Tula R. Paudel, Theanne Schiros, Noah Hurley, Evgeny Y. Tsymbal, Aron Pinczuk, Abhay Pasupathy, Rui He Jan 2016

Modification Of The G-Phonon Mode Of Graphene By Nitrogen Doping, Pavel V. Lukashev, Liuyan Zhao, Tula R. Paudel, Theanne Schiros, Noah Hurley, Evgeny Y. Tsymbal, Aron Pinczuk, Abhay Pasupathy, Rui He

Nebraska Center for Materials and Nanoscience: Faculty Publications

The effect of nitrogen doping on the phonon spectra of graphene is analyzed. In particular, we employ first-principles calculations and scanning Raman analysis to investigate the dependence of phonon frequencies in graphene on the concentration of nitrogen dopants. We demonstrate that the G phonon frequency shows oscillatory behavior as a function of nitrogen concentration. We analyze different mechanisms which could potentially be responsible for this behavior, such as Friedel charge oscillations around the localized nitrogen impurity atom, the bond length change between nitrogen impurity and its nearest neighbor carbon atoms, and the long-range interactions of the nitrogen point defects. We …