Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Condensed Matter Physics

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg May 2024

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg

Physics Undergraduate Honors Theses

The utilization of two-dimensional materials and heterostructures, particularly graphene and hexagonal boron nitride, have garnered significant attention in the realm of nanoelectronics due to their unique properties and versatile functionalities. This study focuses on the synthesis and fabrication processes of monolayer graphene encapsulated between layers of hBN, aiming to explore the potential of these heterostructures for various electronic applications. The encapsulation of graphene within hBN layers not only enhances device performance but also shields graphene from environmental contaminants, ensuring long-term stability. Experimental techniques, including mechanical exfoliation and stamp-assisted transfer, are employed to construct three-layer stacks comprising hBN-graphene-hBN. The fabrication process …


Towards The Electronic Response Of Carbon-Based Van Der Waals Heterostructures In A Diamond Anvil Cell, George Thomas Foskaris Dec 2022

Towards The Electronic Response Of Carbon-Based Van Der Waals Heterostructures In A Diamond Anvil Cell, George Thomas Foskaris

UNLV Theses, Dissertations, Professional Papers, and Capstones

The nanoscale regime of materials has been at the forefront of research and interest in condensed matter physics for many years. In a merger of the fields of two-dimensional (2D) materials and high pressure physics, we present an investigation of the electronic response of carbon-based, van der Waals (vdW) heterostructures in a diamond anvil cell (DAC). Combining these fields presents us with the ability to study the characteristics of such systems both optically, and through electrical transport. Properties such as conductance, band structure, and layer number are considered. The samples in this study are assembled using exfoliation and stacking techniques …


Free Charge Carrier Properties In Two-Dimensional Materials And Monoclinic Oxides Studied By Optical Hall Effect, Sean Knight Aug 2020

Free Charge Carrier Properties In Two-Dimensional Materials And Monoclinic Oxides Studied By Optical Hall Effect, Sean Knight

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this dissertation, optical Hall effect (OHE) measurements are used to determine the free charge carrier properties of important two-dimensional materials and monoclinic oxides. Two-dimensional material systems have proven useful in high-frequency electronic devices due to their unique properties, such as high mobility, which arise from their two-dimensional nature. Monoclinic oxides exhibit many desirable characteristics, for example low-crystal symmetry which could lead to anisotropic carrier properties. Here, single-crystal monoclinic gallium oxide, an AlInN/GaN-based high-electron-mobility transistor (HEMT) structure, and epitaxial graphene are studied as examples. To characterize these material systems, the OHE measurement technique is employed. The OHE is a physical …


Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves Jan 2020

Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves

Graduate Theses, Dissertations, and Problem Reports

Having been theorized in 1947, it was not until 2004 that graphene was first isolated. In the years since its isolation, graphene has been the subject of intense, world-wide study due to its incredibly diverse array of useful properties. Even though many billions of dollars have been spent on its development, graphene has yet to break out of the laboratory and penetrate mainstream industrial applications markets. This is because graphene faces a ‘grand challenge.’ Simply put, there is currently no method of manufacturing high-quality graphene on the industrial scale. This grand challenge looms particularly large for electronic applications where the …


Electronic Transport Behavior Of Adatom- And Nanoparticle-Decorated Graphene, Jamie Anne Elias May 2019

Electronic Transport Behavior Of Adatom- And Nanoparticle-Decorated Graphene, Jamie Anne Elias

Arts & Sciences Electronic Theses and Dissertations

To induce a non-negligible spin-orbit coupling in monolayer graphene, for the purposes of realizing the Kane-Mele Hamiltonian, transition metal adatoms have been deposited in dilute amounts by thermal evaporation in situ while holding the device temperature near 4K. Electronic transport studies including measurements such as gate voltage dependent conductivity and mobility, weak localization, high field magnetoresistance (Shubnikov de Haas oscillations), quantum Hall, and nonlocal voltage were performed at low temperature before and after sequential evaporations. Studies of tungsten adatoms are consistent with literature regarding other metal adatoms on graphene but were unsuccessful in producing a spin-orbit signature, at least partially …


Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon May 2019

Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon

Senior Theses

Two-dimensional materials exhibit properties unlike anything else seen in conventional substances. Electrons in these materials are confined to move only in the plane. In order to explore the effects of these materials, we have built apparatus and refined procedures with which to create two-dimensional structures. Two-dimensional devices have been made using exfoliated graphene and placed on gold contacts. Their topography has been observed using Atomic Force Microscopy (AFM) confirming samples with monolayer, bilayer, and twisted bilayer structure. Relative work functions of each have been measured using Kelvin Probe Force Microscopy (KPFM) showing that twisted bilayer graphene has a surface potential …


Scanning Probe Microscopy Measurements On 2d Materials And Iridates, Armin Ansary Jan 2019

Scanning Probe Microscopy Measurements On 2d Materials And Iridates, Armin Ansary

Theses and Dissertations--Physics and Astronomy

In the past two decades, there has been a quest to understand and utilize novel materials such as iridates and two-dimensional (2D) materials. These classes of materials show a lot of interesting properties both in theoretical predictions as well as experimental results. Physical properties of some of these materials have been investigated using scanning probe measurements, along with other techniques.

One-dimensional (1D) catalytic etching was investigated in few-layer hexagonal boron nitride (hBN) films. Etching of hBN was shown to share several similarities with that of graphitic films. As in graphitic films, etch tracks in hBN commenced at film edges and …


Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse Jan 2019

Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse

Legacy Theses & Dissertations (2009 - 2024)

This dissertation presents theoretical and experimental studies in carbon nanotubes (CNTs), graphene, and van der Waals heterostructures. The first half of the dissertation focuses on cutting edge tight-binding-based quantum transport models which are used to study proton irradiation-induced single-event effects in carbon nanotubes [1], total ionizing dose effects in graphene [2], quantum hall effect in graded graphene p-n junctions [3], and ballistic electron focusing in graphene p-n junctions [4]. In each study, tight-binding models are developed, with heavy emphasis on tying to experimental data. Once benchmarked against experiment, properties of each system which are difficult to access in the laboratory, …


Preparation And Characterization Of Van Der Waals Heterostructures, Horacio Coy Diaz Jun 2016

Preparation And Characterization Of Van Der Waals Heterostructures, Horacio Coy Diaz

USF Tampa Graduate Theses and Dissertations

In this dissertation different van der Waals heterostructures such as graphene-MoS2 and MoTe2-MoS2 were prepared and characterized. In the first heterostructure, polycrystalline graphene was synthesized by chemical vapor deposition and transferred on top of MoS2 single crystal. In the second heterostructure, MoTe2 monolayers were deposited on MoS2 by molecular beam epitaxy.

Characterization of graphene-MoS2 heterostructures was conducted by spin and angle resolve spectroscopy which showed that the electronic structure of the bulk MoS2 and graphene in this van der Waals heterostructures is modified. For MoS2 underneath the graphene, a band …


Transport And Optical Properties Of Low-Dimensional Complex Systems, Andrii Iurov Oct 2014

Transport And Optical Properties Of Low-Dimensional Complex Systems, Andrii Iurov

Dissertations, Theses, and Capstone Projects

Over the last five years of my research work, I, my research was mainly concerned with certain crucial tunneling, transport and optical properties of novel low-dimensional graphitic and carbon-based materials as well as topological insulators. Both single-electron and many-body problems were addressed. We investigated the Dirac electrons transmission through a potential barrier in the presence of circularly polarized light. An anomalous photon-assisted enhanced transmission is predicted and explained in a comparison with the well-known Klein paradox. It is demonstrated that the perfect transmission for nearly-head-on collision in an infinite graphene is suppressed in gapped dressed states of electrons, which is …


Theoretical Studies Of The Growth And Functionality Of Layered Materials, Wei Chen Aug 2014

Theoretical Studies Of The Growth And Functionality Of Layered Materials, Wei Chen

Doctoral Dissertations

In this thesis, we present several projects on the growth and functionality of layered materials, using density functional theory (DFT) method and phenomenological modeling approach. Beyond the understanding of growth mechanisms and exploration of properties, we propose novel avenues to realize controllable growth processes and layered materials with desirable properties. The contents have three major parts:

(1) Graphene growth on Cu(111) and Ni(111) substrates. We first demonstrate that the inherent multi-orientational degeneracy of the graphene islands on Cu(111) in the early stages of nucleation could result in the prevalence of grain boundaries (GBs). Next, we propose a possible solution to …


Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman Aug 2014

Nanoscale Manipulation Of Pristine And Functionalized Freestanding Graphene Using Scanning Tunneling Microscopy, Matthew Ackerman

Graduate Theses and Dissertations

Over the past ten years the 2D material graphene has attracted an enourmous amount of attention from researchers from across diciplines and all over the world. Many of its outstanding electronic properties are present only when it is not interacting with a substrate but is instead freestanding. In this work I demonstrate that pristine and functionalized freestanding graphene can be imaged using a scanning tunneling microscope (STM) and that imaging a flexible 2D surface is fundamentally different from imaging a bulk material due to the attraction between the STM tip and the sample. This attraction can be used to manipulate …


Discrete Strain Engineering In Graphene, Cedric Marcus Horvath May 2014

Discrete Strain Engineering In Graphene, Cedric Marcus Horvath

Graduate Theses and Dissertations

Graphene has a number of fascinating mechanical and electrical properties. Strain engineering in graphene is the attempt to control its properties with mechanical strain. Previous research in this area has come up with an approach using a continuum theory to describe the strain induced gauge fields in graphene; however, this approach is only valid for small strains (5% at most). A discrete framework is being developed in Arkansas that can more accurately calculate the deformation (electrical) and (pseudo-)magnetic gauge fields created by large strains. Computational simulations were carried out and used to get discrete atomic positions for strained, suspended graphene …


Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock May 2012

Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock

Graduate Theses and Dissertations

Graphene, what some are terming the "new silicon", has the possibility of revolutionizing technology through nanoscale design processes. Fabrication of graphene for device processing is limited largely by the temperatures used in conventional deposition. High temperatures are detrimental to device design where many different materials may be present. For this reason, graphene synthesis at low temperatures using plasma-enhanced chemical vapor deposition is the subject of much research. In this thesis, a tool for ultra-high vacuum plasma-enhanced chemical vapor deposition (UHV-PECVD) and accompanying subsystems, such as control systems and alarms, are designed and implemented to be used in future graphene growths. …


The Influence Of Copper Substrate Orientation On Graphene Growth, Zachary Robert Robinson Jan 2012

The Influence Of Copper Substrate Orientation On Graphene Growth, Zachary Robert Robinson

Legacy Theses & Dissertations (2009 - 2024)

This dissertation is focused on determining the influence of the copper substrate on graphene grown by \ac{CVD}. Graphene, which can be grown in single atomic layers on copper substrates, has potential applications in future electronic devices. One of the key issues for the use of graphene grown by chemical vapor deposition for device applications is the influence of defects on the transport properties of the graphene. For instance, growth on metal foil substrates results in multi-domain graphene growth because the foil substrates themselves have a variety of different surface terminations. Therefore, they don't serve as a very good template for …


Graphene: Material That Will Change The Future, Jigar Desai, Darryl Reese Apr 2011

Graphene: Material That Will Change The Future, Jigar Desai, Darryl Reese

Festival of Communities: UG Symposium (Posters)

Graphene is the most recent material discovered by scientists and is a star on the horizon of materials science and condensed matter physics. The one atom thick, two dimensional materials is an amazing conductor of electricity. Although graphene was not discovered completely until 2004, it has already revealed potential applications and scientists have begun researching ways of developing graphene products for the market. Only two products have been successfully produced so far, but scientists have encountered amazing results. This material has many potential applications in the real world and is about to change the future in a positive way.