Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Electronic Theses and Dissertations

Physics and Astronomy

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Condensed Matter Physics

Spin And Charge Transport In Metallic Ferrimagnets And Disordered Magnetic Oxides, Leopoldo A. Hernandez Jun 2024

Spin And Charge Transport In Metallic Ferrimagnets And Disordered Magnetic Oxides, Leopoldo A. Hernandez

Electronic Theses and Dissertations

Recent efforts have been exploring the use of thin film synthetic ferrimagnets and disordered magnetic oxides for applications in spintronic devices. Due to the antiferromagnetic exchange interaction, ferrimagnetic materials offer the ultrafast dynamics of the antiferromagnetic exchange, with a net magnetization that can be influenced externally. With two, or more, competing ferromagnet sublattices, interesting properties arise that depend on the final magnetic landscape after growth of the material and it’s inherent magnetic anisotropy energies. Properties such as magnetic compensation temperatures, and perpendicular magnetic anisotropy are attractive for applications in spintronic memory and logic devices, some already being implemented in MRAM …


The Interplay Of Spin, Charge, And Heat: From Metal/Insulator Heterostructures To Perovskite Bilayers, Sam M. Bleser Mar 2024

The Interplay Of Spin, Charge, And Heat: From Metal/Insulator Heterostructures To Perovskite Bilayers, Sam M. Bleser

Electronic Theses and Dissertations

In this dissertation begin with an investigation of non-local spin transport in an amorphous germanium (a-Ge) sample via the inverse spin Hall effect (ISHE). In that study we show that commonly used techniques such as differential conductance and delta mode of a paired Keithley 6221/2182a for non-local resistance measurements can lead to false indicators of spin transport. Next, we turn out attention to a thickness dependent study in thermally-evaporated chromium (Cr) thin films on a bulk polycrystalline yttrium-iron-garnet (YIG) substrate. This project analyzed the spin transport in the Cr films versus thickness via the longitudinal spin Seebeck effect (LSSE). This …


Thermal, Electrical, And Spin Transport: Encompassing Low-Damping Ferromagnets And Antiferromagnetic/Ferromagnetic Heterostructures, Matthew Ryan Natale Mar 2024

Thermal, Electrical, And Spin Transport: Encompassing Low-Damping Ferromagnets And Antiferromagnetic/Ferromagnetic Heterostructures, Matthew Ryan Natale

Electronic Theses and Dissertations

Continuing technological advancements bring forth escalating challenges in global energy consumption and subsequent power dissipation, posing significant economic and environmental concerns. In response to these difficulties, the fields of thermoelectrics, spintronics, and spincaloritronics emerge as contemporary solutions, each presenting unique advantages. Thermoelectric devices, based on the Seebeck effect, other a passive, carbon-free energy generating solution from waste heat. Although current thermoelectric technology encounters hurdles in achieving optimal efficiencies without intricate designs or complex materials engineering, recently research into low-damping metallic ferromagnetic thin films have provided a new method to enhance spin wave lifetimes, thus contributing to thermoelectric voltage improvements. As …


Thermal, Magnetic, And Electrical Properties Of Thin Films And Nanostructures: From Magnetic Insulators To Organic Thermoelectrics, Michael J. M. Roos Jun 2023

Thermal, Magnetic, And Electrical Properties Of Thin Films And Nanostructures: From Magnetic Insulators To Organic Thermoelectrics, Michael J. M. Roos

Electronic Theses and Dissertations

Modern fabrication and growth techniques allow for the development of increasingly smaller and more complex solid state structures, the characterization of which require highly specialized measurement platforms. In this dissertation I present the development of techniques and instrumentation used in magnetic, thermal, and electrical property measurements of thin films and nanostructures. The understanding of trapped-flux induced artifacts in SQUID magnetometry of large paramagnetic substrates allows for the resolution of increasingly small moments. Using these methods, the antiferromagnetic coupling of the interface between a Y3Fe5O12 film and Gd3Ga5O12substrate is quantitatively …


Coupling Of Light's Orbital Angular Momentum To A Quantum Dot Ensemble, Alaa A. Bahamran Jan 2019

Coupling Of Light's Orbital Angular Momentum To A Quantum Dot Ensemble, Alaa A. Bahamran

Electronic Theses and Dissertations

We theoretically and experimentally investigate the transfer of orbital angular momentum from light to an ensemble of semiconductor-based nanostructures composed of lead sulfide quantum dots. Using an ensemble of quantum dots offers a higher cross-section and more absorption of twisted light fields compared to experimentally challenging single-nanostructure measurements. However, each quantum dot (except for on-center) sees a displaced light beam parallel to its own axis of symmetry. The transition matrix elements for the light-matter interaction are calculated by expressing the displaced light beam in terms of the appropriate light field centered on the nanoparticles. The resulting transition rate induced by …