Open Access. Powered by Scholars. Published by Universities.®

Condensed Matter Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Condensed Matter Physics

The Influence Of Copper Substrate Orientation On Graphene Growth, Zachary Robert Robinson Jan 2012

The Influence Of Copper Substrate Orientation On Graphene Growth, Zachary Robert Robinson

Legacy Theses & Dissertations (2009 - 2024)

This dissertation is focused on determining the influence of the copper substrate on graphene grown by \ac{CVD}. Graphene, which can be grown in single atomic layers on copper substrates, has potential applications in future electronic devices. One of the key issues for the use of graphene grown by chemical vapor deposition for device applications is the influence of defects on the transport properties of the graphene. For instance, growth on metal foil substrates results in multi-domain graphene growth because the foil substrates themselves have a variety of different surface terminations. Therefore, they don't serve as a very good template for …


Energy Pathways And Directionality In Deformation Twinning, S. Kibey, J. B. Liu, Duane D. Johnson, H. Sehitoglu Jan 2007

Energy Pathways And Directionality In Deformation Twinning, S. Kibey, J. B. Liu, Duane D. Johnson, H. Sehitoglu

Duane D. Johnson

We present ab initiodensity functional theory calculations of twinning energy pathways for two opposite twinning modes, (111)[112¯] and (111)[1¯1¯2], in fcc materials to examine the directional nature of twinning which cannot be explained by classical twin nucleationmodels or the “twinnability” criterion. By accounting for these energy pathways in a multiscale model, we quantitatively predict the critical twinning stress for the (111)[1¯1¯2] mode to be substantially higher compared to the favorable (111)[112¯] mode (whose predicted stresses are in agreement with experiment), thus, ruling out twinning in the (111)[1¯1¯2] mode.


Generalized Planar Fault Energies And Twinning In Cu–Al Alloys, S. Kibey, J. B. Liu, Duane D. Johnson, H. Sehitoglu Jan 2006

Generalized Planar Fault Energies And Twinning In Cu–Al Alloys, S. Kibey, J. B. Liu, Duane D. Johnson, H. Sehitoglu

Duane D. Johnson

We report ab initio density functional theory calculations of generalized planar fault energies of fcc Cu–xAl (x=0, 5.0, and 8.3at.%) alloys. We investigate the effects of substitutional solute Al on the unstable intrinsic γus and twin γutstacking faultenergies (SFEs). Our results reveal an increased tendency of Cu–Al to deform preferentially by twinning with increasing Al content, consistent with experiment. We attribute this mechanical behavior to appreciable lowering of the twinning barrier γut, along with the stable intrinsic and twin SFEs.


Segregation Of Bismuth To Triple Junctions In Copper, K.-M. Yin, Alexander H. King, T.E. Hsieh, F.-R. Chen, J.J. Kai, L. Chang Sep 1997

Segregation Of Bismuth To Triple Junctions In Copper, K.-M. Yin, Alexander H. King, T.E. Hsieh, F.-R. Chen, J.J. Kai, L. Chang

Alexander H. King

Bismuth segregation in copper has been studied using energy-dispersive X-ray spectrometry (EDX) in a JEOL 2010F transmission electron microscope. In addition to the expected solute enrichment at grain boundaries, we have observed extremely high concentrations of bismuth at certain triple junctions, with significantly greater enrichment factors than in the adjacent grain boundaries. It is shown here that the triple junction segregation is a function of the parameters of the grain boundaries at the triple line, and existence of this type of segregation implies that the affected triple junctions embody excess free energy. At least one of the observed triple junctions …


Compensation And Characterization Of Gallium Arsenide, Randy A. Roush Jan 1995

Compensation And Characterization Of Gallium Arsenide, Randy A. Roush

Electrical & Computer Engineering Theses & Dissertations

The properties of transition metals in gallium arsenide have been previously investigated extensively with respect to activation energies, but little effort has been made to correlate processing parameters with electronic characteristics. Diffusion of copper in gallium arsenide is of technological importance due to the development of GaAs:Cu bistable photoconductive devices. Several techniques are demonstrated in this work to develop and characterize compensated gallium arsenide wafers. The material is created by the thermal diffusion of copper into silicon-doped GaAs. Transition metals generally form deep and shallow acceptors in GaAs, and therefore compensation is possible by material processing such that the shallow …