Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty Publications

Dealloying

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biological and Chemical Physics

Dealloying Behavior Of Nico And Nicocu Thin Films, Benjamin Peecher, Jennifer R. Hampton Oct 2016

Dealloying Behavior Of Nico And Nicocu Thin Films, Benjamin Peecher, Jennifer R. Hampton

Faculty Publications

Porous metals and alloys, such as those fabricated via electrochemical dealloying, are of interest for a variety of energy applications, ranging from their potential for enhanced catalytic behavior to their use as high surface area supports for pseudocapacitor materials. Here, the electrochemical dealloying process was explored for electrodeposited binary NiCo and ternary NiCoCu thin films. For each of the four different metal ratios, films were dealloyed using linear sweep voltammetry to various potentials in order to gain insight into the evolution of the film over the course of the linear sweep. Electrochemical capacitance, scanning electron microscopy, and energy dispersive X-ray …


Hydrogen Evolution Reaction Measurements Of Dealloyed Porous Nicu, Kyla Koboski, Evan Nelsen, Jennifer R. Hampton Dec 2013

Hydrogen Evolution Reaction Measurements Of Dealloyed Porous Nicu, Kyla Koboski, Evan Nelsen, Jennifer R. Hampton

Faculty Publications

Porous metals are of interest for their high surface area and potential for enhanced catalytic behavior. Electrodeposited NiCu thin films with a range of compositions were electrochemically dealloyed to selectively remove the Cu component. The film structure, composition, and reactivity of these samples were characterized both before and after the dealloying step using scanning electron microscopy, energy-dispersive spectroscopy, and electrochemical measurements. The catalytic behavior of the dealloyed porous Ni samples towards the hydrogen evolution reaction was measured and compared to that of the as-deposited samples. The dealloyed samples were generally more reactive than their as-deposited counterparts at low overpotentials, making …