Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biological and Chemical Physics

Hydrogen Evolution Reaction Measurements Of Dealloyed Porous Nicu, Kyla Koboski, Evan Nelsen, Jennifer R. Hampton Dec 2013

Hydrogen Evolution Reaction Measurements Of Dealloyed Porous Nicu, Kyla Koboski, Evan Nelsen, Jennifer R. Hampton

Faculty Publications

Porous metals are of interest for their high surface area and potential for enhanced catalytic behavior. Electrodeposited NiCu thin films with a range of compositions were electrochemically dealloyed to selectively remove the Cu component. The film structure, composition, and reactivity of these samples were characterized both before and after the dealloying step using scanning electron microscopy, energy-dispersive spectroscopy, and electrochemical measurements. The catalytic behavior of the dealloyed porous Ni samples towards the hydrogen evolution reaction was measured and compared to that of the as-deposited samples. The dealloyed samples were generally more reactive than their as-deposited counterparts at low overpotentials, making …


Enhanced Nucleate Boiling On Horizontal Hydrophobic-Hydrophilic Carbon Nanotube Coatings, Xianming Dai, Xinyu Huang, Fanghao Yang, Xiaodong Li, Joshua Sightler, Yingchao Yang, Chen Li Apr 2013

Enhanced Nucleate Boiling On Horizontal Hydrophobic-Hydrophilic Carbon Nanotube Coatings, Xianming Dai, Xinyu Huang, Fanghao Yang, Xiaodong Li, Joshua Sightler, Yingchao Yang, Chen Li

Faculty Publications

Ideal hydrophobic-hydrophilic composite cavities are highly desired to enhance nucleate boiling. However, it is challenging and costly to fabricate these types of cavities by conventional micro/nano fabrication techniques. In this study, a type of hydrophobic-hydrophilic composite interfaces were synthesized from functionalized multiwall carbon nanotubes by introducing hydrophilic functional groups on the pristine multiwall carbon nanotubes. This type of carbon nanotube enabled hydrophobic-hydrophilic composite interfaces were systematically characterized. Ideal cavities created by the interfaces were experimentally demonstrated to be the primary reason to substantially enhance nucleate boiling


The Schrödinger Equation With Friction From The Quantum Trajectory Perspective, Sophya V. Garashchuk, Vaibhav Dixit, Bing Gu, James Mazzuca Feb 2013

The Schrödinger Equation With Friction From The Quantum Trajectory Perspective, Sophya V. Garashchuk, Vaibhav Dixit, Bing Gu, James Mazzuca

Faculty Publications

Similarity of equations of motion for the classical and quantum trajectories is used to introduce afriction term dependent on the wavefunction phase into the time-dependent Schrödingerequation. The term describes irreversible energy loss by the quantum system. The force offriction is proportional to the velocity of a quantum trajectory. The resulting Schrödinger equationis nonlinear, conserves wavefunction normalization, and evolves an arbitrary wavefunction into the ground state of the system (of appropriate symmetry if applicable). Decrease in energy is proportional to the average kinetic energy of the quantum trajectory ensemble. Dynamics in the high friction regime is suitable for simple models of …