Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biological and Chemical Physics

Testing A Thermodynamic Approach To Collective Animal Behavior In Laboratory Fish Schools, Julia A. Giannini, James G. Puckett Jun 2020

Testing A Thermodynamic Approach To Collective Animal Behavior In Laboratory Fish Schools, Julia A. Giannini, James G. Puckett

Physics and Astronomy Faculty Publications

Collective behaviors displayed by groups of social animals are observed frequently in nature. Understanding and predicting the behavior of complex biological systems is dependent on developing effective descriptions and models. While collective animal systems are characteristically nonequilibrium, we can employ concepts from equilibrium statistical mechanics to motivate the measurement of material-like properties in laboratory animal aggregates. Here, we present results from a new set of experiments that utilize high speed footage of two-dimensional schooling events, particle tracking, and projected static and dynamic light fields to observe and control the behavior of negatively phototaxic fish schools (Hemigrammus bleheri). First, …


Additive Modulation Of Dna-Dna Interactions By Interstitial Ions, Wei Meng, Raju Timsina, Abby Bull, Kurt Andresen, Xiangyun Qiu May 2020

Additive Modulation Of Dna-Dna Interactions By Interstitial Ions, Wei Meng, Raju Timsina, Abby Bull, Kurt Andresen, Xiangyun Qiu

Physics and Astronomy Faculty Publications

Quantitative understanding of biomolecular electrostatics, particularly involving multivalent ions and highly charged surfaces, remains lacking. Ion-modulated interactions between nucleic acids provide a model system in which electrostatics plays a dominant role. Using ordered DNA arrays neutralized by spherical cobalt3+ hexammine and Mg2+ ions, we investigate how the interstitial ions modulate DNA-DNA interactions. Using methods of ion counting, osmotic stress, and x-ray diffraction, we systematically determine thermodynamic quantities, including ion chemical potentials, ion partition, DNA osmotic pressure and force, and DNA-DNA spacing. Analyses of the multidimensional data provide quantitative insights into their interdependencies. The key finding of this study is that …


Differential Uptake Of Gold Nanoparticles By 2 Species Of Tadpole, The Wood Frog (Lithobates Sylvaticus) And The Bullfrog (Lithobates Catesbeianus), Lucas B. Thompson, Gerardo L.F. Carfagno, Kurt Andresen, Andrea J. Sitton, Taylor B. Bury, Laura L. Lee, Kevin T. Lerner, Peter P. Fong Aug 2017

Differential Uptake Of Gold Nanoparticles By 2 Species Of Tadpole, The Wood Frog (Lithobates Sylvaticus) And The Bullfrog (Lithobates Catesbeianus), Lucas B. Thompson, Gerardo L.F. Carfagno, Kurt Andresen, Andrea J. Sitton, Taylor B. Bury, Laura L. Lee, Kevin T. Lerner, Peter P. Fong

Biology Faculty Publications

Engineered nanoparticles are aquatic contaminants of emerging concern that exert ecotoxicological effects on a wide variety of organisms. We exposed cetyltrimethylammonium bromide–capped spherical gold nanoparticles to wood frog and bullfrog tadpoles with conspecifics and in combination with the other species continuously for 21 d, then measured uptake and localization of gold. Wood frog tadpoles alone and in combination with bullfrog tadpoles took up significantly more gold than bullfrogs. Bullfrog tadpoles in combination with wood frogs took up significantly more gold than controls. The rank order of weight-normalized gold uptake was wood frogs in combination > wood frogs alone > bullfrogs in combination …


The Impact Of Base Stacking On The Conformations And Electrostatics Of Single-Stranded Dna, Alex Plumridge, Steve P. Meisburger, Kurt Andresen, Lois Pollack Feb 2017

The Impact Of Base Stacking On The Conformations And Electrostatics Of Single-Stranded Dna, Alex Plumridge, Steve P. Meisburger, Kurt Andresen, Lois Pollack

Physics and Astronomy Faculty Publications

Single-stranded DNA (ssDNA) is notable for its interactions with ssDNA binding proteins (SSBs) during fundamentally important biological processes including DNA repair and replication. Previous work has begun to characterize the conformational and electrostatic properties of ssDNA in association with SSBs. However, the conformational distributions of free ssDNA have been difficult to determine. To capture the vast array of ssDNA conformations in solution, we pair small angle X-ray scattering with novel ensemble fitting methods, obtaining key parameters such as the size, shape and stacking character of strands with different sequences. Complementary ion counting measurements using inductively coupled plasma atomic emission spectroscopy …