Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty publications – Physics

PARADOX

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Atomic, Molecular and Optical Physics

Suppression Of Pair Creation Due To A Steady Magnetic Field, W Su, M Jiang, Z Q. Lv, Rainer Grobe, Qichang Su Jul 2012

Suppression Of Pair Creation Due To A Steady Magnetic Field, W Su, M Jiang, Z Q. Lv, Rainer Grobe, Qichang Su

Faculty publications – Physics

We investigate the electron-positron pair creation process in a supercritical static electric field in the presence of a static magnetic field that is perpendicular. If both fields vary spatially in one direction the dynamics can be reduced to a set of one-dimensional systems. Using a generalized computational quantum field theoretical procedure, we calculate the time dependence of the spatial density for the created electrons. In the presence of the magnetic field, a significant amount of suppression of pair creation is observed in the simulations and confirmed by an analytical analysis for the limits of short-range fields and long interaction times. …


Pair Creation Enhancement Due To Combined External Fields, M Jiang, W Su, Z Q. Lv, X Lu, Y J. Li, Rainer Grobe, Qichang Su Mar 2012

Pair Creation Enhancement Due To Combined External Fields, M Jiang, W Su, Z Q. Lv, X Lu, Y J. Li, Rainer Grobe, Qichang Su

Faculty publications – Physics

We study the creation of electron-positron pairs from the vacuum induced by a combination of a static electric field and an alternating field. We find that the overall pair production can be increased by two orders of magnitude compared to the yields associated with each field individually. We examine the interesting case where both fields are spatially localized, permitting us to examine the time evolution of the spatial density for the created particle pairs. We find that there are a variety of competing mechanisms that contribute to the total yield.


Electron-Positron Pair Creation Induced By Quantum-Mechanical Tunneling, M Jiang, W Su, X Lu, Z M. Sheng, Y T. Li, J Zhang, Rainer Grobe, Qichang Su May 2011

Electron-Positron Pair Creation Induced By Quantum-Mechanical Tunneling, M Jiang, W Su, X Lu, Z M. Sheng, Y T. Li, J Zhang, Rainer Grobe, Qichang Su

Faculty publications – Physics

We study the creation of electron-positron pairs from the vacuum induced by two spatially displaced static electric fields. The strength and spatial width of each localized field is less than required for pair creation. If, however, the separation between the fields is less than the quantum-mechanical tunneling length associated with the corresponding quantum scattering system, the system produces a steady flux of electron-positron pairs. We compute the time dependence of the pair-creation probability by solving the Dirac equation numerically for various external field sequences. For the special case of two very narrow fields we provide an analytical expression for the …


Creation Of Multiple Electron-Positron Pairs In Arbitrary Fields, T Cheng, Q Su, Rainer Grobe Jul 2009

Creation Of Multiple Electron-Positron Pairs In Arbitrary Fields, T Cheng, Q Su, Rainer Grobe

Faculty publications – Physics

We examine the spontaneous breakdown of the matter vacuum triggered by an external force of arbitrary strength and spatial and temporal variations. We derive a nonperturbative framework that permits the computation of the complete time evolution of various multiple electron-positron pair probabilities. These time-dependent probabilities can be computed from a generating function as well as from solutions to a set of ratelike equations with coupling constants determined by the single-particle solutions to the time-dependent Dirac equation. This approach might be of relevance to the planned experiments to observe for the first time the laser-induced breakdown process of the vacuum.


Interpretational Difficulties In Quantum Field Theory, P Krekora, Q Su, Rainer Grobe Feb 2006

Interpretational Difficulties In Quantum Field Theory, P Krekora, Q Su, Rainer Grobe

Faculty publications – Physics

Based on space-time-resolved solutions to relativistic quantum field theory we illustrate interpretational difficulties in associating field-theoretical quantities with properties of particles. These difficulties are related to the fact that the definition of the spatial probability density of particles depends on the choice of the Hilbert subspace on which the field operator is projected. We illustrate these problems by analyzing pair-production probabilities and spatial densities for the electron-positron dynamics associated with a spatially localized subcritical potential that is turned on and off in time.