Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty publications – Physics

MOTION

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Atomic, Molecular and Optical Physics

Bosonic Analog Of The Klein Paradox, R E. Wagner, M R. Ware, Q Su, Rainer Grobe Feb 2010

Bosonic Analog Of The Klein Paradox, R E. Wagner, M R. Ware, Q Su, Rainer Grobe

Faculty publications – Physics

The standard Klein paradox describes how an incoming electron scatters off a supercritical electrostatic barrier that is so strong that it can generate electron- positron pairs. This fermionic system has been widely discussed in textbooks to illustrate some of the discrepancies between quantum mechanical and quantum field theoretical descriptions for the pair creation process. We compare the fermionic dynamics with that of the corresponding bosonic system. We point out that the direct counterpart of the Pauli exclusion principle (the central mechanism to resolve the fermionic Klein paradox) is stimulated emission, which leads to the resolution of the analogous bosonic paradox.


Electric-Field-Induced Relativistic Larmor-Frequency Reduction, P Krekora, Q Su, Rainer Grobe Jul 2002

Electric-Field-Induced Relativistic Larmor-Frequency Reduction, P Krekora, Q Su, Rainer Grobe

Faculty publications – Physics

Using the numerical solution to the time-dependent Dirac equation we show that the effect of relativity on the usual Larmor period for an electron in a magnetic field can be enhanced drastically if a suitably scaled and aligned static electric field is added to the interaction. This electric field does not change the electron's speed but leads to an elliptical spin precession due to relativity. This spin precession is accompanied by a position-dependent spin distribution.


Classical Versus Quantum Dynamics For A Driven Relativistic Oscillator, Rainer Grobe, Qichang Su, P J. Peverly, R E. Wagner Mar 2000

Classical Versus Quantum Dynamics For A Driven Relativistic Oscillator, Rainer Grobe, Qichang Su, P J. Peverly, R E. Wagner

Faculty publications – Physics

We compare the time evolution of the quantum-mechanical spatial probability density obtained by solving the time-dependent Dirac equation with its classical counterpart obtained from the relativistic Liouville equation for the phase-space density in a regime in which the dynamics is essentially relativistic. For a resonantly driven one-dimensional harmonic oscillator, the simplest nontrivial model system to perform this comparison, we find that, despite the nonlinearity induced by relativity, the classical ensemble description matches the quantum evolution remarkably well.