Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Atomic, Molecular and Optical Physics

Phase Diagram Of The One-Dimensional Hubbard-Holstein Model At Half And Quarter Filling, Rahul Hardikar, R. T. Clay Jan 2007

Phase Diagram Of The One-Dimensional Hubbard-Holstein Model At Half And Quarter Filling, Rahul Hardikar, R. T. Clay

Scholarship and Professional Work - LAS

The Hubbard-Holstein model is one of the simplest to incorporate both electron-electron and electron-phonon interactions. In one dimension at half filling, the Holstein electron-phonon coupling promotes on-site pairs of electrons and a Peierls charge-density wave, while the Hubbard on-site Coulomb repulsion U promotes antiferromagnetic correlations and a Mott insulating state. Recent numerical studies have found a possible third intermediate phase between Peierls and Mott states. From direct calculations of charge and spin susceptibilities, we show that (i) as the electron-phonon coupling is increased, first a spin gap opens, followed by the Peierls transition. Between these two transitions, the metallic intermediate …


Temperature-Driven Transition From The Wigner Crystal To The Bond-Charge-Density Wave In The Quasi-One-Dimensional Quarter-Filled Band, R. T. Clay, Rahul Hardikar, S. Mazumdar Jan 2007

Temperature-Driven Transition From The Wigner Crystal To The Bond-Charge-Density Wave In The Quasi-One-Dimensional Quarter-Filled Band, R. T. Clay, Rahul Hardikar, S. Mazumdar

Scholarship and Professional Work - LAS

It is known that within the interacting electron model Hamiltonian for the one-dimensional 1/4-filled band, the singlet ground state is a Wigner crystal only if the nearest-neighbor electron-electron repulsion is larger than a critical value. We show that this critical nearest-neighbor Coulomb interaction is different for each spin subspace, with the critical value decreasing with increasing spin. As a consequence, with the lowering of temperature, there can occur a transition from a Wigner crystal charge-ordered state to a spin-Peierls state that is a bond-charge-density wave with charge occupancies different from the Wigner crystal. This transition is possible because spin excitations …