Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Atomic, Molecular and Optical Physics

Practical Sensor For Measurement Of Nitrogen, Dusan Popovic, Vladimir Milosavljevic, Steven Daniels Nov 2007

Practical Sensor For Measurement Of Nitrogen, Dusan Popovic, Vladimir Milosavljevic, Steven Daniels

Articles

This paper presents a method for precise measurement of atomic and molecular nitrogen in an oxygen-nitrogen dc plasma. This is achieved by monitoring the intensities of the atomic nitrogen spectral line at 821.6 nm and the molecular nitrogen bandhead at 337.1 nm, relative to the atomic oxygen spectral line at 844.7 nm. Oxygen is one of the most frequently used gases for surface chemical treatment, including deposition and etching, therefore the ability to measure and control the process and chemical composition of the process is essential. To validate this oxygen actimometry method for N2-xO2 (where x varies from 0 to …


Synthesize A Nanoscale Ferrofluid, Rob Snyder Jan 2007

Synthesize A Nanoscale Ferrofluid, Rob Snyder

Nanotechnology Teacher Summer Institutes

The chemical synthesis of a ferrofluid is a nanoscale science activity that originally appears in the Journal of Chemical Education. Access to the following website requires a subscription to the journal. J. Chem. Educ., 76, 943-948 (1999). The article was authored by Jonathan Breitzer and George Lisensky.


Formation Of In- (2×1) And In Islands On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali Jan 2007

Formation Of In- (2×1) And In Islands On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The growth of indium on a vicinal Si (100) - (2×1) surface at room temperature by femtosecond pulsed laser deposition (fsPLD) was investigated by in situ reflection high-energy electron diffraction (RHEED). Recovery of the RHEED intensity was observed between laser pulses and when the growth was terminated. The surface diffusion coefficient of deposited In on initial two-dimensional (2D) In- (2×1) layer was determined. As growth proceeds, three-dimensional In islands grew on the 2D In- (2×1) layer. The RHEED specular profile was analyzed during film growth, while the grown In islands were examined by ex situ atomic force microscopy. The full …