Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Physics

Photoluminescence Spectra Of Silicon Doped With Cadmium, N A. Sultanov, E T. Rakhimov, Z Mirzajonov, F T. Yusupov Aug 2021

Photoluminescence Spectra Of Silicon Doped With Cadmium, N A. Sultanov, E T. Rakhimov, Z Mirzajonov, F T. Yusupov

Scientific-technical journal

Cadmium and zinc, as transition metals, are deep-level impurities (DL) and have a significant effect on the electrical, photoelectric, recombination, and other properties of semiconductor crystals.This paper presents the results of experimental studies of the optical and electrical properties of silicon crystals containing impurity atoms of cadmium and zinc using DLTS and low-temperature photoluminescence (PL).


"Effect Of Zinc And Strontium Dopants On The Structure And Stability Of Hydroxyapatite At High Temperatures", Dylan Correll Smith Aug 2018

"Effect Of Zinc And Strontium Dopants On The Structure And Stability Of Hydroxyapatite At High Temperatures", Dylan Correll Smith

College of Science and Health Theses and Dissertations

Hydroxyapatite (HA) is a bioceramic that synthetically mimics human bone. It is commonly used in medical applications as a filler for damaged bone, and in procedures such as dental implants and hip replacements. Doping of HA with elements such as zinc and strontium is known to increase the bioactivity of HA, as well as increase the retention and adsorption of therapeutic molecules for drug delivery. High-temperature, in-situ X-ray diffraction data were measured on 10 at. % zinc-doped, 10 at. % strontium-doped, and undoped HA powders at the Advanced Photon Source at Argonne National Laboratory. This research studied the temporal and …


Novel Magnetic And Optical Properties Of Sn1−XZnXO2 Nanoparticles, Nevil A. Franco, Kongara M. Reddy, Josh Eixenberger, Dmitri A. Tenne, Charles B. Hanna, Alex Punnoose May 2015

Novel Magnetic And Optical Properties Of Sn1−XZnXO2 Nanoparticles, Nevil A. Franco, Kongara M. Reddy, Josh Eixenberger, Dmitri A. Tenne, Charles B. Hanna, Alex Punnoose

Physics Faculty Publications and Presentations

In this work, we report on the effects of doping SnO2 nanoparticles with Zn2+ ions. A series of ∼2–3 nm sized Sn1−x ZnxO2 crystallite samples with 0 ≤ x ≤ 0.18 were synthesized using a forced hydrolysis method. Increasing dopant concentration caused systematic changes in the crystallite size, oxidation state of Sn, visible emission, and band gap of SnO2 nanoparticles. X-ray Diffraction studies confirmed the SnO2 phase purity and the absence of any impurity phases. Magnetic measurements at room temperature showed a weak ferromagnetic behavior characterized by an open hysteresis loop. Their …


Beta Decay Of Neutron-Rich Isotopes Of Zinc And Gallium, Mohammad Faleh M. Al-Shudifat May 2015

Beta Decay Of Neutron-Rich Isotopes Of Zinc And Gallium, Mohammad Faleh M. Al-Shudifat

Doctoral Dissertations

Beta-decays of neutron-rich nuclei near the doubly magic 78Ni [78Ni] were studied at the Holifield Radioactive Ion Beam Facility. The half-life and the gamma-gamma coincidence spectra were used to study the nuclear structure. A new 82,83Zn [82Zn, 83Zn] decay-scheme was built, where a 71±7% beta-delayed neutron branching ratio was assigned in 82Zn [82Zn] decay. New gamma-ray lines and energy levels observed in 82,83Ga [82Ga, 83Ga] beta-decay were used to update previously reported decay-schemes. The experimental results were compared to shell model calculations, which postulate the existence of Gamow-Teller transitions in these decays. The half-lives of 155±17 …


Inhibition Of The Aminopeptidase From Aeromonas Proteolytica By L-Leucinethiol: Kinetic And Spectroscopic Characterization Of A Slow, Tight-Binding Inhibitor–Enzyme Complex, David Bienvenue, Brian Bennett, Richard Holz Mar 2015

Inhibition Of The Aminopeptidase From Aeromonas Proteolytica By L-Leucinethiol: Kinetic And Spectroscopic Characterization Of A Slow, Tight-Binding Inhibitor–Enzyme Complex, David Bienvenue, Brian Bennett, Richard Holz

Richard C. Holz

The peptide inhibitor l-leucinethiol (LeuSH) was found to be a potent, slow-binding inhibitor of the aminopeptidase from Aeromonas proteolytica (AAP). The overall potency (KI*) of LeuSH was 7 nM while the corresponding alcohol l-leucinol (LeuOH) was a simple competitive inhibitor of much lower potency (KI=17 μM). These data suggest that the free thiol is likely involved in the formation of the E·I and E·I* complexes, presumably providing a metal ligand. In order to probe the nature of the interaction of LeuSH and LeuOH with the dinuclear active site of AAP, we have recorded both the electronic absorption and EPR spectra …


X-Ray Crystallographic Characterization Of The Co(Ii)-Substituted Tris-Bound Form Of The Aminopeptidase From Aeromonas Proteolytica, Petra Munih, Aaron Moulin, Carin Stamper, Brian Bennett, Dagmar Ringe, Gregory Petsko, Richard Holz Mar 2015

X-Ray Crystallographic Characterization Of The Co(Ii)-Substituted Tris-Bound Form Of The Aminopeptidase From Aeromonas Proteolytica, Petra Munih, Aaron Moulin, Carin Stamper, Brian Bennett, Dagmar Ringe, Gregory Petsko, Richard Holz

Richard C. Holz

The X-ray crystal structure of the Co(II)-loaded form of the aminopeptidase from Aeromonas proteolytica ([CoCo(AAP)]) was solved to 2.2 Å resolution. [CoCo(AAP)] folds into an α/β globular domain with a twisted β-sheet hydrophobic core sandwiched between α-helices, identical to [ZnZn(AAP)]. Co(II) binding to AAP does not introduce any major conformational changes to the overall protein structure and the amino acid residues ligated to the dicobalt(II) cluster in [CoCo(AAP)] are the same as those in the native Zn(II)-loaded structure with only minor perturbations in bond lengths. The Co(II)–Co(II) distance is 3.3 Å. Tris(hydroxymethyl)aminomethane (Tris) coordinates to the dinuclear Co(II) active site …


Kinetic And Spectroscopic Characterization Of The E134a- And E134d-Altered Dape-Encoded N-Succinyl-L,L-Diaminopimelic Acid Desuccinylase From Haemophilus Influenzae, Ryan Davis, David Bienvenue, Sabina Swierczek, Danuta Gilner, Lakshman Rajagopal, Brian Bennett, Richard Holz Mar 2015

Kinetic And Spectroscopic Characterization Of The E134a- And E134d-Altered Dape-Encoded N-Succinyl-L,L-Diaminopimelic Acid Desuccinylase From Haemophilus Influenzae, Ryan Davis, David Bienvenue, Sabina Swierczek, Danuta Gilner, Lakshman Rajagopal, Brian Bennett, Richard Holz

Richard C. Holz

Glutamate-134 (E134) is proposed to act as the general acid/base during the hydrolysis reaction catalyzed by the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae. To date, no direct evidence has been reported for the role of E134 during catalytic turnover by DapE. In order to elucidate the catalytic role of E134, altered DapE enzymes were prepared in which E134 was substituted with an alanine and an aspartate residue. The Michaelis constant (K m) does not change upon substitution with aspartate but the rate of the reaction changes drastically in the following order: glutamate (100% activity), aspartate (0.09%), and alanine …


Magnetism Of Zn-Doped Sno2: Role Of Surfaces, Pushpa Raghani, Balaji Ramanujam May 2014

Magnetism Of Zn-Doped Sno2: Role Of Surfaces, Pushpa Raghani, Balaji Ramanujam

Physics Faculty Publications and Presentations

Surface effects on the magnetization of Zn-doped SnO2 are investigated using first principles method. Magnetic behavior of Zn-doped bulk and highest and lowest energy surfaces—(001) and (110), respectively, are investigated in presence and absence of other intrinsic defects. The Zn-doped (110) and (001) surfaces of SnO2 show appreciable increase in the magnetic moment (MM) compared to Zn-doped bulk SnO2. Formation energies of Zn defects on both the surfaces are found to be lower than those in bulk SnO2. Zn doping favors the formation of oxygen vacancies. The density of states analysis on the Zn-doped …


Magnetism Of Zn-Doped Sno2: Role Of Surfaces, Pushpa Raghani, Balaji Ramanujam Mar 2014

Magnetism Of Zn-Doped Sno2: Role Of Surfaces, Pushpa Raghani, Balaji Ramanujam

Pushpa Raghani

Surface effects on the magnetization of Zn-doped SnO2 are investigated using first principles method. Magnetic behavior of Zn-doped bulk and highest and lowest energy surfaces—(001) and (110), respectively, are investigated in presence and absence of other intrinsic defects. The Zn-doped (110) and (001) surfaces of SnO2 show appreciable increase in the magnetic moment (MM) compared to Zn-doped bulk SnO2. Formation energies of Zn defects on both the surfaces are found to be lower than those in bulk SnO2. Zn doping favors the formation of oxygen vacancies. The density of states analysis on the Zn-doped (110) surface reveals that the spin …


The Metal Ion Requirements Of Arabidopsis Thaliana Glx2-2 For Catalytic Activity, Pattraranee Limphong, Ross M. Mckinney, Nicole E. Adams, Christopher A. Makaroff, Brian Bennett, Michael W. Crowder Feb 2010

The Metal Ion Requirements Of Arabidopsis Thaliana Glx2-2 For Catalytic Activity, Pattraranee Limphong, Ross M. Mckinney, Nicole E. Adams, Christopher A. Makaroff, Brian Bennett, Michael W. Crowder

Physics Faculty Research and Publications

In an effort to better understand the structure, metal content, the nature of the metal centers, and enzyme activity of Arabidopsis thaliana Glx2-2, the enzyme was overexpressed, purified, and characterized using metal analyses, kinetics, and UV–vis, EPR, and 1H NMR spectroscopies. Glx2-2-containing fractions that were purple, yellow, or colorless were separated during purification, and the differently colored fractions were found to contain different amounts of Fe and Zn(II). Spectroscopic analyses of the discrete fractions provided evidence for Fe(II), Fe(III), Fe(III)–Zn(II), and antiferromagnetically coupled Fe(II)–Fe(III) centers distributed among the discrete Glx2-2-containing fractions. The individual steady-state kinetic constants varied among the …


Heterologous Expression And Purification Of Vibrio Proteolyticus (Aeromonas Proteolytica) Aminopeptidase: A Rapid Protocol, Mariam Hartley, Brian Bennett Jul 2009

Heterologous Expression And Purification Of Vibrio Proteolyticus (Aeromonas Proteolytica) Aminopeptidase: A Rapid Protocol, Mariam Hartley, Brian Bennett

Physics Faculty Research and Publications

Metalloaminopeptidases (mAPs) are enzymes that are involved in HIV infectivity, tumor growth and metastasis, angiogenesis, and bacterial infection. Investigation of structure–function relationships in mAPs is a prerequisite to rational design of anti-mAP chemotherapeutics. The most intensively studied member of the biomedically important dinuclear mAPs is the prototypical secreted Vibrio proteolyticus di-zinc aminopeptidase (VpAP). The wild-type enzyme is readily purified from the supernatant of cultures of V. proteolyticus, but recombinant variants require expression in Escherichia coli. A greatly improved system for the purification of recombinant VpAP is described. A VpAP-(His)6 polypeptide, containing an N-terminal propeptide, and a C-terminal …


Arabidopsis Thaliana Glx2-1 Contains A Dinuclear Metal Binding Site, But Is Not A Glyoxalase 2, Pattraranee Limphong, Michael W. Crowder, Brian Bennett, Christopher A. Makaroff Jan 2009

Arabidopsis Thaliana Glx2-1 Contains A Dinuclear Metal Binding Site, But Is Not A Glyoxalase 2, Pattraranee Limphong, Michael W. Crowder, Brian Bennett, Christopher A. Makaroff

Physics Faculty Research and Publications

In an effort to probe the structure and function of a predicted mitochondrial glyoxalase 2, GLX2-1, from Arabidopsis thaliana, GLX2-1 was cloned, overexpressed, purified and characterized using metal analyses, kinetics, and UV–visible, EPR, and 1H-NMR spectroscopies. The purified enzyme was purple and contained substoichiometric amounts of iron and zinc; however, metal-binding studies reveal that GLX2-1 can bind nearly two equivalents of either iron or zinc and that the most stable analogue of GLX2-1 is the iron-containing form. UV–visible spectra of the purified enzyme suggest the presence of Fe(II) in the protein, but the Fe(II) can be oxidized over …


X-Ray Crystallographic Characterization Of The Co(Ii)-Substituted Tris-Bound Form Of The Aminopeptidase From Aeromonas Proteolytica, Petra Munih, Aaron Moulin, Carin Stamper, Brian Bennett, Dagmar Ringe, Gregory A. Petsko, Richard C. Holz Aug 2007

X-Ray Crystallographic Characterization Of The Co(Ii)-Substituted Tris-Bound Form Of The Aminopeptidase From Aeromonas Proteolytica, Petra Munih, Aaron Moulin, Carin Stamper, Brian Bennett, Dagmar Ringe, Gregory A. Petsko, Richard C. Holz

Physics Faculty Research and Publications

The X-ray crystal structure of the Co(II)-loaded form of the aminopeptidase from Aeromonas proteolytica ([CoCo(AAP)]) was solved to 2.2 Å resolution. [CoCo(AAP)] folds into an α/β globular domain with a twisted β-sheet hydrophobic core sandwiched between α-helices, identical to [ZnZn(AAP)]. Co(II) binding to AAP does not introduce any major conformational changes to the overall protein structure and the amino acid residues ligated to the dicobalt(II) cluster in [CoCo(AAP)] are the same as those in the native Zn(II)-loaded structure with only minor perturbations in bond lengths. The Co(II)–Co(II) distance is 3.3 Å. Tris(hydroxymethyl)aminomethane (Tris) coordinates to the dinuclear Co(II) active site …


Experimental Evidence For A Metallohydrolase Mechanism In Which The Nucleophile Is Not Delivered By A Metal Ion: Epr Spectrokinetic And Structural Studies Of Aminopeptidase From Vibrio Proteolyticus, Amit Kumar, Gopal R. Periyannan, Aaron W. Kittell, Jung Ja Kim, Brian Bennett May 2007

Experimental Evidence For A Metallohydrolase Mechanism In Which The Nucleophile Is Not Delivered By A Metal Ion: Epr Spectrokinetic And Structural Studies Of Aminopeptidase From Vibrio Proteolyticus, Amit Kumar, Gopal R. Periyannan, Aaron W. Kittell, Jung Ja Kim, Brian Bennett

Physics Faculty Research and Publications

Metallohydrolases catalyse some of the most important reactions in biology and are targets for numerous chemotherapeutic agents designed to combat bacterial infectivity, antibiotic resistance, HIV infectivity, tumour growth, angiogenesis and immune disorders. Rational design of inhibitors of these enzymes with chemotherapeutic potential relies on detailed knowledge of the catalytic mechanism. The roles of the catalytic transition ions in these enzymes have long been assumed to include the activation and delivery of a nucleophilic hydroxy moiety. In the present study, catalytic intermediates in the hydrolysis of L-leucyl-L-leucyl-L-leucine by Vibrio proteolyticus aminopeptidase were characterized in spectrokinetic and structural studies. Rapid-freeze-quench EPR studies …


Kinetic And Spectroscopic Characterization Of The E134a- And E134d-Altered Dape-Encoded N-Succinyl-L,L-Diaminopimelic Acid Desuccinylase From Haemophilus Influenzae, Ryan S. Davis, David L. Bienvenue, Sabina I. Swierczek, Danuta M. Gilner, Lakshman Rajagopal, Brian Bennett, Richard C. Holz Mar 2006

Kinetic And Spectroscopic Characterization Of The E134a- And E134d-Altered Dape-Encoded N-Succinyl-L,L-Diaminopimelic Acid Desuccinylase From Haemophilus Influenzae, Ryan S. Davis, David L. Bienvenue, Sabina I. Swierczek, Danuta M. Gilner, Lakshman Rajagopal, Brian Bennett, Richard C. Holz

Physics Faculty Research and Publications

Glutamate-134 (E134) is proposed to act as the general acid/base during the hydrolysis reaction catalyzed by the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae. To date, no direct evidence has been reported for the role of E134 during catalytic turnover by DapE. In order to elucidate the catalytic role of E134, altered DapE enzymes were prepared in which E134 was substituted with an alanine and an aspartate residue. The Michaelis constant (K m) does not change upon substitution with aspartate but the rate of the reaction changes drastically in the following order: glutamate (100% …


Third Quarter Report, Covering January Through March 2002, John Farley Mar 2002

Third Quarter Report, Covering January Through March 2002, John Farley

Transmutation Sciences Materials (TRP)

Progress from June 2001-November 2001 was presented at the winter meeting of the American Nuclear Society in Reno (November 12-15, 2001), and incorporated into a refereed conference proceeding. A copy of the refereed conference proceeding has been provided to Tony Hechanova. In brief, the paper described the new program to examine the corrosive effects of lead-bismuth eutectic (LBE) on steels. We employed various types of surface studies (Scanning Electron Microscope [SEM], and X-ray Photoelectron Spectrometry [XPS]) to examine steel samples that had been exposed to LBE for various lengths of time at various temperatures. The goal is to understand the …


Inhibition Of The Aminopeptidase From Aeromonas Proteolytica By L-Leucinethiol: Kinetic And Spectroscopic Characterization Of A Slow, Tight-Binding Inhibitor–Enzyme Complex, David L. Bienvenue, Brian Bennett, Richard C. Holz Jan 2000

Inhibition Of The Aminopeptidase From Aeromonas Proteolytica By L-Leucinethiol: Kinetic And Spectroscopic Characterization Of A Slow, Tight-Binding Inhibitor–Enzyme Complex, David L. Bienvenue, Brian Bennett, Richard C. Holz

Physics Faculty Research and Publications

The peptide inhibitor l-leucinethiol (LeuSH) was found to be a potent, slow-binding inhibitor of the aminopeptidase from Aeromonas proteolytica (AAP). The overall potency (KI*) of LeuSH was 7 nM while the corresponding alcohol l-leucinol (LeuOH) was a simple competitive inhibitor of much lower potency (KI=17 μM). These data suggest that the free thiol is likely involved in the formation of the E·I and E·I* complexes, presumably providing a metal ligand. In order to probe the nature of the interaction of LeuSH and LeuOH with the dinuclear active site of AAP, we have …


An Ab Initio Study Of Specific Solvent Effects On The Electronic Coupling Element In Electron Transfer Reactions, Thomas M. Henderson '98, Robert J. Cave Nov 1998

An Ab Initio Study Of Specific Solvent Effects On The Electronic Coupling Element In Electron Transfer Reactions, Thomas M. Henderson '98, Robert J. Cave

All HMC Faculty Publications and Research

Specific solvent effects on the electronic coupling element for electron transfer are examined using two model donor–acceptor systems (Zn2+ and Li2+) and several model “solvent” species (He, Ne, H2O, and NH3). The effects are evaluated relative to the given donor–acceptor pair without solvent present. The electronic coupling element (Hab) is found to depend strongly on the identity of the intervening solvent, with He atoms decreasing Hab, whereas H2O and NH3 significantly increase Hab. The distance dependence (essentially exponential decay) is weakly affected by a single intervening solvent atom–molecule. However, when the donor–acceptor distance increases in concert with addition of successively …


Theoretical Studies Of Electron Transfer In Metal Dimers: Xy+→X+Y, Where X, Y=Be, Mg, Ca, Zn, Cd, Robert J. Cave, David V. Baxter, William A. Goddard Iii, John D. Baldeschwieler Jul 1987

Theoretical Studies Of Electron Transfer In Metal Dimers: Xy+→X+Y, Where X, Y=Be, Mg, Ca, Zn, Cd, Robert J. Cave, David V. Baxter, William A. Goddard Iii, John D. Baldeschwieler

All HMC Faculty Publications and Research

The electronic matrix element responsible for electron exchange in a series of metal dimers was calculated using ab initio wave functions. The distance dependence is approximately exponential for a large range of internuclear separations. A localized description, where the two nonorthogonal structures characterizing the electron localized at the left and right sites are each obtained self‐consistently, is found to provide the best description of the electron exchange process. We find that Gaussian basis sets are capable of predicting the expected exponential decay of the electronic interactions even at quite large internuclear distances.