Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler Mar 2024

Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler

Faculty Publications

Ferroelectricity in hafnium zirconium oxide (Hf1−xZrxO2) and the factors that impact it have been a popular research topic since its discovery in 2011. Although the general trends are known, the interactions between fabrication parameters and their effect on the ferroelectricity of Hf1−xZrxO2 require further investigation. In this paper, we present a statistical study and a model that relates Zr concentration (x), film thickness (tf), and annealing temperature (Ta) with the remanent polarization (Pr) in tungsten (W)-capped Hf1−xZrxO2. …


Fabrication Of Nanoscale Columnar Diodes By Glancing Angle Deposition, Jacob D. Weightman May 2020

Fabrication Of Nanoscale Columnar Diodes By Glancing Angle Deposition, Jacob D. Weightman

Macalester Journal of Physics and Astronomy

Glancing angle deposition (GLAD) is a process in which thin films are deposited onto a substrate with obliquely incident vapor together with precisely controlled azimuthal substrate rotation. Ballistic shadowing effects due to the oblique incidence produce nanoscale structures, and a variety of feature shapes, including tilted columns, helices, and vertical columns can be achieved by varying the azimuthal rotation during the deposition process. Due to this control of morphology and the compatibility of the process with a wide variety of materials, GLAD films have found applications in a variety of fields including sensing, photonics, photovoltaics, and catalysis, where they are …


Polarization Of Bi2te3 Thin Film In A Floating-Gate Capacitor Structure, Hui Yuan, Kai Zhang, Haitao Li, Hao Zhu, John E. Bonevich, Helmut Baumgart, Curt A. Richter, Qiliang Li Jan 2014

Polarization Of Bi2te3 Thin Film In A Floating-Gate Capacitor Structure, Hui Yuan, Kai Zhang, Haitao Li, Hao Zhu, John E. Bonevich, Helmut Baumgart, Curt A. Richter, Qiliang Li

Electrical & Computer Engineering Faculty Publications

Metal-Oxide-Semiconductor (MOS) capacitors with Bi2Te3 thin film sandwiched and embedded inside the oxide layer have been fabricated and studied. The capacitors exhibit ferroelectric-like hysteresis which is a result of the robust, reversible polarization of the Bi2Te3 thin film while the gate voltage sweeps. The temperature-dependent capacitance measurement indicates that the activation energy is about 0.33 eV for separating the electron and hole pairs in the bulk of Bi2Te3, and driving them to either the top or bottom surface of the thin film. Because of the fast polarization speed, potentially excellent …


Self-Assembly Of Ge Quantum Dots On Si(100)- 2×1 By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali Jan 2005

Self-Assembly Of Ge Quantum Dots On Si(100)- 2×1 By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Self-assembled Ge quantum dots are grown on Si(100)- 2×1 by pulsed laser deposition. The growth is studied by in situ reflection high-energy electron diffraction and postdeposition atomic force microscopy. After the completion of the wetting layer, transient hut clusters, faceted by different planes, are observed. When the height of these clusters exceeded a certain value, the facets developed into {305} planes. Some of these huts become {305}-faceted pyramids as the film mean thickness was increased. With further thickness increase, dome clusters developed on the expense of these pyramids. © 2005 American Institute of Physics. [DOI: 10.1063/1.1949285]


Design Of Gradient Index Optical Thin Films, Jeffrey J. Druessel Jun 1996

Design Of Gradient Index Optical Thin Films, Jeffrey J. Druessel

Theses and Dissertations

Gradient index thin films provide greater flexibility for the design of optical coatings than the more conventional 'layer' films. In addition, gradient index films have higher damage thresholds and better adhesion properties. This dissertation presents an enhancement to the existing inverse Fourier transform gradient index design method, and develops a new optimal design method for gradient index films using a generalized Fourier series approach. The inverse Fourier transform method is modified to include use of the phase of the index profile as a variable in rugate filter design. Use of an optimal phase function in Fourier-based filter designs reduces the …


Design And Performance Evaluation Of A Gas Chromatograph Micromachined In A Single Crystal Silicon Substrate, Rocky R. Reston Mar 1993

Design And Performance Evaluation Of A Gas Chromatograph Micromachined In A Single Crystal Silicon Substrate, Rocky R. Reston

Theses and Dissertations

This investigation designed and developed a miniature gas chromatograph (GC) using silicon micromachining techniques. The GC is composed of a miniature sample injector (10 µl sample loop); a 0.9 m long, rectangular-shaped (300 µm width and 10 micrometers height) capillary column coated with a 0.2 µm thick copper phthalocyanine (CuPc) stationary phase; and a dual-detector scheme incorporating a CuPc-coated chemiresistor and a 125 µm diameter thermal conductivity detector bead. Micromachining was employed to fabricate the sample injector interface, the GC column, and the dual-detector cavity. A novel processing technique was developed to sublime the CuPc stationary phase coating on the …