Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

Bandgap Profiling In Cigs Solar Cells Via Valence Electron Energy-Loss Spectroscopy, Julia I. Deitz, Shankar Karki, Sylvain X. Marsillac, Tyler J. Grassman Mar 2018

Bandgap Profiling In Cigs Solar Cells Via Valence Electron Energy-Loss Spectroscopy, Julia I. Deitz, Shankar Karki, Sylvain X. Marsillac, Tyler J. Grassman

Electrical & Computer Engineering Faculty Publications

A robust, reproducible method for the extraction of relative bandgap trends from scanning transmission electron microscopy (STEM) based electron energy-loss spectroscopy (EELS) is described. The effectiveness of the approach is demonstrated by profiling the bandgap through a CuIn1-xGaxSe2 solar cell that possesses intentional Ga/(In + Ga) composition variation. The EELS-determined bandgap profile is compared to the nominal profile calculated from compositional data collected via STEM-based energy dispersive X-ray spectroscopy. The EELS based profile is found to closely track the calculated bandgap trends, with only a small, fixed offset difference. This method, which is particularly advantageous …


Reflective Efficiencies Of Materials For Applications Of Bifacial Solar Cells, Michael Metter May 2016

Reflective Efficiencies Of Materials For Applications Of Bifacial Solar Cells, Michael Metter

Senior Theses

The bifacial solar cell is superior to its monofacial predecessor due to its ability to convert both incident light on top and reflected light from below into energy. The scattering of the reflected light is affected by the property of the material on which it is interacting. To date, little work has been contributed to studying the properties of these materials to determine optimal quantities for bifacial solar cells. In the first experiment, reflective efficiencies compared to the angle of reflection were explored for different grit of sandpaper in order to develop an understanding of how surface texture impacts reflectivity. …


Atmospheric Pressure Chemical Vapor Deposition Of Functional Oxide Materials For Crystalline Silicon Solar Cells, Kristopher Davis Jan 2015

Atmospheric Pressure Chemical Vapor Deposition Of Functional Oxide Materials For Crystalline Silicon Solar Cells, Kristopher Davis

Electronic Theses and Dissertations

Functional oxides are versatile materials that can simultaneously enable efficiency gains and cost reductions in crystalline silicon (c-Si) solar cells. In this work, the deposition of functional oxide materials using atmospheric pressure chemical vapor deposition (APCVD) and the integration of these materials into c-Si solar cells are explored. Specifically, thin oxide films and multi-layer film stacks are utilized for the following purposes: (1) to minimize front surface reflectance without increasing parasitic absorption within the anti-reflection coating(s); (2) to maximize internal back reflectance of rear passivated cells, thereby increasing optical absorption of weakly absorbed long wavelength photons (? > 900 nm); (3) …


Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford May 2013

Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford

Graduate Theses and Dissertations

In this work, computational investigation of plasmonic nanostructures was conducted using the commercial finite element electromagnetics solver Ansys® HFSS. Arrays of silver toroid nanoparticles located on the surface of an amorphous silicon thin-film absorbing layer were studied for particle sizes ranging from 20 nm to 200 nm in outer diameter. Parametric optimization by calculating an approximation of the photocurrent enhancement due to the nanoparticles was performed to determine optimal surface coverage of the nanoparticles. A comparison was made between these optimized nanotoroid arrays and optimized nanosphere arrays based on spectral absorption enhancement and potential photocurrent enhancement in an amorphous silicon …


Making Solar Cells, D. Venkataraman Jan 2013

Making Solar Cells, D. Venkataraman

Nanotechnology Teacher Summer Institutes

Overview of solar energy and photovoltaic cells. Making a cuprous oxide cell activity.


Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji Dec 2012

Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji

Graduate Theses and Dissertations

Thin film solar cells are promising to realize cheap solar energy. Compared to conventional wafer cells, they can reduce the use of semiconductor material by 90%. The efficiency of thin film solar cells, however, is limited due to insufficient light absorption. Sufficient light absorption at the bandgap of semiconductor requires a light path more than 10x the thickness of the semiconductor. Advanced designs for light trapping are necessary for solar cells to absorb sufficient light within a limited volume of semiconductor. The goal is to convert the incident light into a trapped mode in the semiconductor layer.

In this dissertation, …


Electron Drift-Mobility Measurements In Polycrystalline Cuin1-Xgaxse2 Solar Cells, Steluta A. Dinca, Eric A. Schiff, William N. Shafarman, Brian Egaas, Rommel Noufi, David L. Young Mar 2012

Electron Drift-Mobility Measurements In Polycrystalline Cuin1-Xgaxse2 Solar Cells, Steluta A. Dinca, Eric A. Schiff, William N. Shafarman, Brian Egaas, Rommel Noufi, David L. Young

Physics - All Scholarship

We report photocarrier time-of-flight measurements of electron drift mobilities for the p-type CuIn1-xGaxSe2 films incorporated in solar cells. The electron mobilities range from 0.02 to 0.05 cm^2/Vs and are weakly temperature-dependent from 100–300 K. These values are lower than the range of electron Hall mobilities (2-1100 cm2/Vs) reported for n-type polycrystalline thin films and single crystals. We propose that the electron drift mobilities are properties of disorder-induced mobility edges and discuss how this disorder could increase cell efficiencies.


Thermodynamic Limit To Photonic-Plasmonic Light-Trapping In Thin Films On Metals, Eric A. Schiff Nov 2011

Thermodynamic Limit To Photonic-Plasmonic Light-Trapping In Thin Films On Metals, Eric A. Schiff

Physics - All Scholarship

We calculate the maximum optical absorptance enhancements in thin semiconductor films on metals due to structures that diffuse light and couple it to surface plasmon polaritons. The calculations can be used to estimate plasmonic effects on light-trapping in solar cells. The calculations are based on the statistical distribution of energy in the electromagnetic modes of the structure, which include surface plasmon polariton modes at the metal interface as well as the trapped waveguide modes in the film. The enhancement has the form 4n2+/h (n – film refractive index, λ – optical wavelength, h …


Design Of Organic Tandem Solar Cells Using Pcpdtbt: Pc61 Bm And P3ht: Pc71bm, Gon Namkoong, Patrick Boland, Keejoo Lee, James Dean Jan 2010

Design Of Organic Tandem Solar Cells Using Pcpdtbt: Pc61 Bm And P3ht: Pc71bm, Gon Namkoong, Patrick Boland, Keejoo Lee, James Dean

Electrical & Computer Engineering Faculty Publications

We conducted optical and electrical simulations with the goal of determining the optimal design for conjugated polymer-fullerene tandem solar cells using poly[2,6-(4,4-bis-(2-ethylhexyl)- 4H-cyclopenta[2,1- b;3,4- b′] dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT): [6,6]-phenyl C61 butyric acid methyl ester (PC61 BM) as a bottom cell and poly(3-hexylthiophene) (P3HT): [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) as a top cell. The effects of photon density, absorption, balanced and unbalanced charge carrier transport, and bimolecular recombination in the two subcells were incorporated into the simulations. We found that the maximum energy conversion efficiency (η) is 9% when charge carrier mobilities in …


Effect Of Ga Content On Defect States In Cuin1-XGaXSe2 Photovoltaic Devices, Jennifer T. Heath, J. David Cohen, William N. Shafarman, Dongxiang Liao, Angus Rockett Jan 2002

Effect Of Ga Content On Defect States In Cuin1-XGaXSe2 Photovoltaic Devices, Jennifer T. Heath, J. David Cohen, William N. Shafarman, Dongxiang Liao, Angus Rockett

Faculty Publications

Defects in the band gap of CuIn1-xGaxSe2 have been characterized using transient photocapacitance spectroscopy. The measured spectra clearly show response from a band of defects centered around 0.8 eV from the valence band edge as well as an exponential distribution of band tail states. Despite Ga contents ranging from Ga/(In+Ga)=0.0 to 0.8, the defect bandwidth and its position relative to the valence band remain constant. This defect band may act as an important recombination center, contributing to the decrease in device efficiency with increasing Ga content.


High-Efficiency Solar Cells Based On Cu(Inal)Se[Sub 2] Thin Films, S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, W. N. Shafarman Jan 2002

High-Efficiency Solar Cells Based On Cu(Inal)Se[Sub 2] Thin Films, S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, W. N. Shafarman

Electrical & Computer Engineering Faculty Publications

A Cu(InAl)Se2solar cell with 16.9% efficiency is demonstrated using a Cu(InAl)Se2thin film deposited by four-source elemental evaporation and a device structure of glass/Mo/Cu(InAl)Se2/CdS/ZnO/indium tin oxide/(Ni/Algrid)/MgF2. A key to high efficiency is improved adhesion between the Cu(InAl)Se2 and the Mo back contact layer, provided by a 5-nm-thick Ga interlayer, which enabled the Cu(InAl)Se2 to be deposited at a 530 °C substrate temperature. Film and device properties are compared to Cu(InGa)Se2 with the same band gap of 1.16 eV. The solar cells have similar behavior, with performance limited by recombination through …


Low‐Cost Technique For Preparing N‐Sb2S3/P‐Si Heterojunction Solar Cells, O. Savadogo, K. C. Mandal Jul 1993

Low‐Cost Technique For Preparing N‐Sb2S3/P‐Si Heterojunction Solar Cells, O. Savadogo, K. C. Mandal

Faculty Publications

No abstract provided.