Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Imaging The Dipole-Dipole Energy Exchange Between Ultracold Rubidium Rydberg Atoms, Donald P. Fahey, Thomas J. Carroll, Michael W. Noel Jun 2015

Imaging The Dipole-Dipole Energy Exchange Between Ultracold Rubidium Rydberg Atoms, Donald P. Fahey, Thomas J. Carroll, Michael W. Noel

Physics and Astronomy Faculty Publications

The long-range, anisotropic nature of the interaction among atoms in an ultracold dipolar gas leads to a rich array of possibilities for studying many-body physics. In this work, an ultracold gas of highly excited atoms is used to study energy transport due to the long-range dipole-dipole interaction. A technique is developed to measure both the internal energy states of the interacting Rydberg atoms and their positions in space. This technique is demonstrated by observing energy exchange between two spatially separated groups of Rydberg atoms excited to two different internal states. Simulations confirm the general features of the energy transport in …


Szilard Engine Reversibility As Quantum Gate Function, F. Matthew Mihelic May 2012

Szilard Engine Reversibility As Quantum Gate Function, F. Matthew Mihelic

Faculty Publications

A quantum gate is a logically and thermodynamically reversible situation that effects a unitary transformation of qubits of superimposed information, and essentially constitutes a situation for a reversible quantum decision. A quantum decision is a symmetry break, and the effect of the function of a Szilard engine is a symmetry break. A quantum gate is a situation in which a reversible quantum decision can be made, and so if a logically and thermodynamically reversible Szilard engine can be theoretically constructed then it would function as a quantum gate. While the traditionally theorized Szilard engine is not thermodynamically reversible, if one …


Angular Dependence Of The Dipole-Dipole Interaction In A Nearly One-Dimensional Sample Of Rydberg Atoms, Thomas J. Carroll, Katharine Claringbould, Anne Goodsell, M. J. Lim, Michael W. Noel Oct 2004

Angular Dependence Of The Dipole-Dipole Interaction In A Nearly One-Dimensional Sample Of Rydberg Atoms, Thomas J. Carroll, Katharine Claringbould, Anne Goodsell, M. J. Lim, Michael W. Noel

Physics and Astronomy Faculty Publications

Atoms in an ultracold highly excited sample are strongly coupled through the dipole-dipole interaction. In an effort to understand and manipulate the complicated interactions in this system we are investigating their dependence on the relative orientation of the dipoles. By focusing a 480 nm beam from a tunable dye laser into a magneto-optical trap, we produce a nearly one-dimensional sample of Rydberg atoms. The trap lies at the center of four conducting rods with which we can vary the magnitude and direction of the electric field at the trap, thus controlling the orientation of the dipoles with respect to the …