Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nonlinear Optics

Articles 1 - 14 of 14

Full-Text Articles in Physics

Filaments And Their Application To Air Lasing, Spectroscopy, And Guided Discharge, Ali Rastegari May 2023

Filaments And Their Application To Air Lasing, Spectroscopy, And Guided Discharge, Ali Rastegari

Optical Science and Engineering ETDs

Laser filamentation is a fascinating phenomenon that occurs when an intense laser beam travels through transparent materials, in particular air. At sufficiently high power (TW in the near IR, GW in the UV), instead of spreading out like a regular laser beam, something remarkable happens: the laser beam becomes tightly focused, creating a thin and intense column of light called a laser filament. Laser filamentation is characterized by two main properties: (I) a high-intensity core that remains narrow over long distances beyond the Rayleigh range and (II) a low-density plasma channel within the core. In recent years, laser filamentation has …


Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer Jan 2022

Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer

Dissertations and Theses

This thesis focuses on the key nonlinear optical effects that arise from the interactions of intense ultrafast laser pulses with various states of matter. These interactions involve electronic and molecular states and yield new information on the underlying fundamental processes that govern the molecular world. Modern day lasers offer ultrashort pulses, high intensities, and complex polarizations and wavefronts. These extreme conditions have profound effect on the optical properties and behaviors of electronic and molecular states within a material. The changes in these mechanisms effect generation of nonlinear optics, such supercontinuum (SC), stimulated Raman (SRS), self-focusing and filamentation, conical emission (CE), …


Intracavity Phase Interferometry Based Fiber Sensors, Luke Jameson Horstman Dec 2021

Intracavity Phase Interferometry Based Fiber Sensors, Luke Jameson Horstman

Optical Science and Engineering ETDs

Intracavity Phase Interferometry (IPI) is a detection technique that exploits the inherent sensitivity of a laser's frequency to the parameters of its cavity. Intracavity interferometry is orders of magnitude more sensitive than its extracavity alternatives. This dissertation improves on previous free-space proof-of-concept designs. By implementing the technique in fiber optics, using optical parametric oscillation, and investigating non-Hermitian quantum mechanics and dispersion tailoring enhancement techniques, IPI has become more applicable and sensitive. Ring and linear IPI configurations were realized in this work, both operating as bidirectional fiber optical parametric oscillators. The benefit of using externally pumped synchronous optical parametric oscillation is …


Nonlinear Optical Studies Of Interfacial Ferroelectricity And Strain Distribution In Perovskite Dielectric Films, Tony Le Sep 2021

Nonlinear Optical Studies Of Interfacial Ferroelectricity And Strain Distribution In Perovskite Dielectric Films, Tony Le

Dissertations, Theses, and Capstone Projects

Dielectric and ferroelectric perovskite films have been model energy storage structures for their low-dielectric loss, extremely high charge-discharge speed, and good temperature stability, yet there is still much to understand about the material’s limitations. This dissertation presents a detailed understanding of the strain-induced ferroelectricity at the boundary between a strontium titanate (SrTiO3) ultrathin film epitaxially grown on a germanium (Ge) substrate through optical second harmonic generation (SHG), and the polydomain distribution in the Zr-doped BaTiO3 (BZT) films by time-resolved pump-probe spectroscopy.

First, SHG measurements were performed to reveal interfacial ferroelectricity in the epitaxial SrTiO3/Ge (100) …


Nonlinear Optics For Nanoparticle Tracking And Materials Characterization, Angela Christina Aguilar Jan 2019

Nonlinear Optics For Nanoparticle Tracking And Materials Characterization, Angela Christina Aguilar

Open Access Theses & Dissertations

A high-speed 3D imaging method is developed by integrating ultrafast laser pulse shaping, temporal focusing microscopy and defocused imaging. This system does not require mechanical movement of either the stage or laser beam. Axial scanning is achieved by manipulation of group velocity dispersions on the femtosecond laser spectrum via pulse shaping method by applying modulation functions on an acoustic optical modulator which diffracts the laser spectrum. The scanning depth becomes only dependent on electronic signals which can be tuned to kHz speeds. The volumetric high-speed scanning capability was demonstrated on fluorescent microspheres suspended in a volume of 100 x100 x …


Tunable, Room Temperature Thz Emitters Based On Nonlinear Photonics, Raju Sinha Mar 2017

Tunable, Room Temperature Thz Emitters Based On Nonlinear Photonics, Raju Sinha

FIU Electronic Theses and Dissertations

The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. The increasing interest in the development of ultra-compact, tunable room temperature Terahertz (THz) emitters with wide-range tunability has stimulated in-depth studies of different mechanisms of THz generation in the past decade due to its various potential applications such as biomedical diagnosis, security screening, chemical identification, life sciences and very high speed wireless communication. Despite the tremendous research and development efforts, all the available state-of-the-art THz emitters suffer from either being …


Second Harmonic Generation – A Novel Approach In Retinal Imaging, Denis Y. Sharoukhov Feb 2017

Second Harmonic Generation – A Novel Approach In Retinal Imaging, Denis Y. Sharoukhov

Dissertations, Theses, and Capstone Projects

Here we present the utilization of Second Harmonic Generation (SHG) for label-free imaging of microtubules (MTs) in the retinal nerve fiber layer (RNFL). MTs are an important part of axonal cytoskeleton, providing structural support and serving as a railroad in intracellular transport. We demonstrate the application of SHG microscopy to the following studies: 1) Can changes in MT conformation be detected when treated with a stabilizing drug (Taxol); 2) if disruption in MT precedes loss of axons in a mouse model of glaucoma (DBA/2J); and 3) if elevated levels of intraocular pressure affect MT integrity. Our results validate SHG imaging …


Spontaneous Parametric Down Conversion Of Photons Through Β-Barium Borate, Luke Horowitz May 2016

Spontaneous Parametric Down Conversion Of Photons Through Β-Barium Borate, Luke Horowitz

Physics

An apparatus for detecting pairs of entangled 405nm photons that have undergone Spontaneous Parametric Down Conversion through β-Barium Borate is described. By using avalanche photo-diodes to detect the low-intensity converted beam and a coincidence module to register coincident photons, it is possible to create an apparatus than can be used to perform quantum information experiments under a budget appropriate for an undergraduate physics lab.


Accelerating Diffraction-Free Beams In Photonic Lattices, K. Makris, I. Kaminer, Ramy El-Ganainy, N. Efremidis, Zhigang Chen, M. Segev, Demetrios Christodoulides Jun 2015

Accelerating Diffraction-Free Beams In Photonic Lattices, K. Makris, I. Kaminer, Ramy El-Ganainy, N. Efremidis, Zhigang Chen, M. Segev, Demetrios Christodoulides

Ramy El-Ganainy

We study nondiffracting accelerating paraxial optical beams in periodic potentials, in both the linear and the nonlinear domains. In particular, we show that only a unique class of z-dependent lattices can support a true accelerating diffractionless beam. Accelerating lattice solitons, autofocusing beams and accelerating bullets in optical lattices are systematically examined.


Effects Of Surface States, Defects And Dopants On The Optical And Magnetic Properties Of Low-Dimensional Materials, Ramakrishna Podila Aug 2011

Effects Of Surface States, Defects And Dopants On The Optical And Magnetic Properties Of Low-Dimensional Materials, Ramakrishna Podila

All Dissertations

Nanomaterials have attracted the attention of researchers from various fields due to their unique features (that are otherwise absent in the bulk) such as quantum confinement, high surface to volume ratio, ability for surface modification etc. Since the discovery of fullerenes and carbon nanotubes, several synthesis techniques have been developed for nanomaterial growth. However, different control parameters in different synthesis techniques often result in nanostructures with varying defects that may alter their fundamental behavior. Such defects or disorder in the crystal lattice can lead to the disruption of lattice symmetry. The defect-induced symmetry lowering (or breaking) effects play a vital …


Molecular Structure-Nonlinear Optical Property Relationships For A Series Of Polymethine And Squaraine Molecules, Jie Fu Jan 2006

Molecular Structure-Nonlinear Optical Property Relationships For A Series Of Polymethine And Squaraine Molecules, Jie Fu

Electronic Theses and Dissertations

This dissertation reports on the investigation of the relationships between molecular structure and two-photon absorption (2PA) properties for a series of polymethine and squaraine molecules. Current and emerging applications exploiting the quadratic dependence upon laser intensity, such as two-photon fluorescence imaging, three-dimensional microfabrication, optical data storage and optical limiting, have motivated researchers to find novel materials exhibiting strong 2PA. Organic materials are promising candidates because their linear and nonlinear optical properties can be optimized for applications by changing their structures through molecular engineering. Polymethine and squaraine dyes are particularly interesting because they are fluorescent and showing large 2PA. We used …


Discrete Nonlinear Wave Propagation In Kerr Nonlinear Media, Joachim Meier Jan 2004

Discrete Nonlinear Wave Propagation In Kerr Nonlinear Media, Joachim Meier

Electronic Theses and Dissertations

Discrete optical systems are a subgroup of periodic structures in which the evolution of a continuous electromagnetic field can be described by a discrete model. In this model, the total field is the sum of localized, discrete modes. Weakly coupled arrays of single mode channel waveguides have been known to fall into this class of systems since the late 1960's. Nonlinear discrete optics has received a considerable amount of interest in the last few years, triggered by the experimental realization of discrete solitons in a Kerr nonlinear AlGaAs waveguide array by H. Eisenberg and coworkers in 1998. In this work …


Dynamic Nonlinear Effect On Lasing In A Random Medium, Boyang Liu, Alexey Yamilov, Yong Ling, Junying Xu, Hui Cao Aug 2003

Dynamic Nonlinear Effect On Lasing In A Random Medium, Boyang Liu, Alexey Yamilov, Yong Ling, Junying Xu, Hui Cao

Physics Faculty Research & Creative Works

We have studied both experimentally and numerically the dynamic effect of nonlinearity on lasing in disordered medium. The third-order nonlinearity not only changes the frequency and size of lasing modes, but also modifies the laser emission intensity and laser pulse width. When the nonlinear response time is longer than the lifetime of the lasing mode, the nonlinearity changes the laser output through modifying the size of the lasing mode. When the nonlinear response is faster than the buildup of the lasing mode, positive nonlinearity always extracts more laser emission from the random medium due to the enhancement of single particle …


Effect Of Kerr Nonlinearity On Defect Lasing Modes In Weakly Disordered Photonic Crystals, Boyang Liu, Alexey Yamilov, Hui Cao Aug 2003

Effect Of Kerr Nonlinearity On Defect Lasing Modes In Weakly Disordered Photonic Crystals, Boyang Liu, Alexey Yamilov, Hui Cao

Physics Faculty Research & Creative Works

We studied the effect of Kerr nonlinearity on lasing in defect modes of weakly disordered photonic crystals. Our time-independent calculation based on self-consistent nonlinear transfer matrix method shows that Kerr nonlinearity modifies both frequencies and quality factors of defect modes. We also used a time-dependent algorithm to investigate the dynamic nonlinear effect. Under continuous pumping, the spatial sizes and intensities of defect lasing modes are changed by Kerr nonlinearity. Such changes are sensitive to the nonlinear response time.