Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nonlinear

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 20 of 20

Full-Text Articles in Physics

Nonlinear Rogue Wave Generation For All-Optical Switching In Optical Fibers And Photonic Integrated Circuits, Samuel Alexander Bechtold May 2024

Nonlinear Rogue Wave Generation For All-Optical Switching In Optical Fibers And Photonic Integrated Circuits, Samuel Alexander Bechtold

Honors Program Theses and Projects

For my thesis we discuss the history of optics, electronics and photonicsproviding a framework from which I investigate the viability of engineering a Photonic Integrated Circuit (PIC) that takes advantage of the nonlinear optical process known as Rogue Wave Generation (RWG) for an all-optical switching mechanism that is capable of switching speeds in the Peta-Hertz (PHz) frequency regime. This topic is introduced through a discussion of how technological advances such as the transistor, laser and optical fiber made modern computing and telecommunications possible. This is followed by a theoretical explanation of the nonlinear optical phenomena known as supercontinuum generation (SCG) …


Bifurcations And Hysteresis In The Dynamics Of Small Populations Of Spherical Magnets, Peter T. Haugen Dec 2022

Bifurcations And Hysteresis In The Dynamics Of Small Populations Of Spherical Magnets, Peter T. Haugen

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

If you heat up some kinds of metals and then cool them down next to a magnet, they will be a magnet when they cool, but if they cool down away from a magnet, they will just be a lump of metal. This is an example of hysteresis and it’s very important for lots of technology. Another example of hysteresis might be a water tower pump that turns on when the tower is nearly empty and keeps going until the tower is nearly full. Whether or not the pump is on when the tower is half full depends on what …


The Cavity-Embedded Cooper Pair Transistor As A Charge Detector Operating In The Nonlinear Regime, Bhargava Thyagarajan Jan 2022

The Cavity-Embedded Cooper Pair Transistor As A Charge Detector Operating In The Nonlinear Regime, Bhargava Thyagarajan

Dartmouth College Ph.D Dissertations

The cavity-embedded Cooper pair transistor (cCPT) has been shown to be a nearly quantum limited charge detector operating with only a single intracavity photon. Here, we use the inherent Kerr nonlinearity to demonstrate a dispersive charge sensing technique inspired by the Josephson bifurcation amplifier. Operating in the bistable regime close to a bifurcation edge, the cCPT is sensitive to charge shifts of 0.09e in a single-shot readout scheme with a detection time of 3 μs and a detection fidelity of 94%. The readout is implemented with only ∼ 25 intracavity photons in the high oscillation amplitude state, still several orders …


Hyperpolarizability Dispersion Measured For Carbon Disulfide Vapor, Rodrigo N. Fernandez Aug 2021

Hyperpolarizability Dispersion Measured For Carbon Disulfide Vapor, Rodrigo N. Fernandez

UNLV Theses, Dissertations, Professional Papers, and Capstones

The second hyperpolarizability (γ) of carbon disulfide (CS2) was measured by gas phase electric-field-induced second harmonic generation (ESHG), for laser wavelengths in the range of 765-1064 nm. The observed hyperpolarizability is decomposed into electronic (γ^e) and vibrational (γ^v) contributions, and the dispersion curve for γ^eis extrapolated to the static limit, with the result γ^e_0 = 12558 ± 93 atomic units. The results of this experiment agree with other recent nonlinear optical measurements and theoretical calculations.


Nonlinear Sliding Mode Observer Applied To Microalgae Growth, Rebecca J. Griffith Dec 2018

Nonlinear Sliding Mode Observer Applied To Microalgae Growth, Rebecca J. Griffith

Doctoral Dissertations and Master's Theses

Modeling biological processes, such as algae growth, is an area of ongoing research. The ability to understand the multitude of parameters that influence this system provides a platform for better understanding the dynamics of microalgae growth. Empirical modeling efforts look to understand sources of driving nutrients that influence harmful algal blooms (HABs). These harmful algal blooms are dense aggregates that have an increasingly negative impact on local economics, marine and freshwater systems, and public health. They result from a high influx of nitrogen and nutrients that drive the algae biomass to exponentially grow. This growth blocks out the sun, potentially …


On The Ramberg-Osgood Stress-Strain Model And Large Deformations Of Cantilever Beams, Ronald J. Giardina Jr Aug 2017

On The Ramberg-Osgood Stress-Strain Model And Large Deformations Of Cantilever Beams, Ronald J. Giardina Jr

University of New Orleans Theses and Dissertations

In this thesis the Ramberg-Osgood nonlinear model for describing the behavior of many different materials is investigated. A brief overview of the model as it is currently used in the literature is undertaken and several misunderstandings and possible pitfalls in its application is pointed out, especially as it pertains to more recent approaches to finding solutions involving the model. There is an investigation of the displacement of a cantilever beam under a combined loading consisting of a distributed load across the entire length of the beam and a point load at its end and new solutions to this problem are …


Orbital Stability Results For Soliton Solutions To Nonlinear Schrödinger Equations With External Potentials, Joseph B. Lindgren Jan 2017

Orbital Stability Results For Soliton Solutions To Nonlinear Schrödinger Equations With External Potentials, Joseph B. Lindgren

Theses and Dissertations--Mathematics

For certain nonlinear Schroedinger equations there exist solutions which are called solitary waves. Addition of a potential $V$ changes the dynamics, but for small enough $||V||_{L^\infty}$ we can still obtain stability (and approximately Newtonian motion of the solitary wave's center of mass) for soliton-like solutions up to a finite time that depends on the size and scale of the potential $V$. Our method is an adaptation of the well-known Lyapunov method.

For the sake of completeness, we also prove long-time stability of traveling solitons in the case $V=0$.


Structural Distortion-Induced Magnetoelastic Locking In Sr2Iro4 Revealed Through Nonlinear Optical Harmonic Generation, D. H. Torchinsky, H. Chu, L. Zhao, N. B. Perkins, Y. Sizyuk, T. Qi, Gang Cao, D. Hsieh Mar 2015

Structural Distortion-Induced Magnetoelastic Locking In Sr2Iro4 Revealed Through Nonlinear Optical Harmonic Generation, D. H. Torchinsky, H. Chu, L. Zhao, N. B. Perkins, Y. Sizyuk, T. Qi, Gang Cao, D. Hsieh

Physics and Astronomy Faculty Publications

We report a global structural distortion in Sr2IrO4 using spatially resolved optical second and third harmonic generation rotational anisotropy measurements. A symmetry lowering from an I41/acd to I41/a space group is observed both above and below the Néel temperature that arises from a staggered tetragonal distortion of the oxygen octahedra. By studying an effective superexchange Hamiltonian that accounts for this lowered symmetry, we find that perfect locking between the octahedral rotation and magnetic moment canting angles can persist even in the presence of large noncubic local distortions. Our results …


Nano And Nanostructured Materials For Optical Applications, Panit Chantharasupawong Jan 2015

Nano And Nanostructured Materials For Optical Applications, Panit Chantharasupawong

Electronic Theses and Dissertations

Nano and nanostructured materials offer unique physical and chemical properties that differ considerably from their bulk counterparts. For decades, due to their fascinating properties, they have been extensively explored and found to be beneficial in numerous applications. These materials are key components in many cutting-edge optic and photonic technologies, including photovoltaics, waveguides and sensors. In this dissertation, the uses of nano and nanostructured materials for optical applications are investigated in the context of optical limiting, three dimensional displays, and optical sensing. Nanomaterials with nonlinear optical responses are promising candidates for self-activating optical limiters. In the first part of this study, …


Information-Entropic Measure Of Energy-Degenerate Kinks In Two-Field Models, R.A.C. Correa, A. De Souza Dutra, M. Gleiser Oct 2014

Information-Entropic Measure Of Energy-Degenerate Kinks In Two-Field Models, R.A.C. Correa, A. De Souza Dutra, M. Gleiser

Dartmouth Scholarship

We investigate the existence and properties of kink-like solitons in a class of models with two interacting scalar fields. In particular, we focus on models that display both double and single-kink solutions, treatable analytically using the Bogomol'nyi–Prasad–Sommerfield bound (BPS). Such models are of interest in applications that include Skyrmions and various superstring-motivated theories. Exploring a region of parameter space where the energy for very different spatially-bound configurations is degenerate, we show that a newly-proposed momentum–space entropic measure called Configurational Entropy (CE) can distinguish between such energy-degenerate spatial profiles. This information-theoretic measure of spatial complexity provides a complementary perspective to situations …


Nonlinear Processes In Multi-Mode Optical Fibers, Hamed Pourbeyram Kaleibar May 2014

Nonlinear Processes In Multi-Mode Optical Fibers, Hamed Pourbeyram Kaleibar

Theses and Dissertations

Nonlinear processes in optical fibers can affect data transmission and power carried by

optical fibers and can limit the bandwidth and the capacity of optical communications.

On the other hand nonlinear phenomena could be utilized to build in-fiber all-optical

light sources and amplifiers. In this thesis new peaks inside an optical fiber have been

generated using nonlinear processes. An intense green pump laser has been launched

into a short fiber and specific modes have been excited to generate two new peaks in

red and blue wavelengths, where two pump photons are annihilated to create two new

photons in red and …


Analyses Of Nonlinearity Measures In High-Amplitude Sound Propagation, Michael B. Muhlestein Jul 2013

Analyses Of Nonlinearity Measures In High-Amplitude Sound Propagation, Michael B. Muhlestein

Theses and Dissertations

Military aircraft generate high-amplitude noise which can cause injury to attending personnel. Efforts to mitigate the effects of this noise require a detailed understanding of the propagation of the noise, which was shown previously to be nonlinear. This thesis presents an analysis of high-amplitude noise propagation, emphasizing measures used to quantify the importance of considering nonlinearity. Two measures of the importance of nonlinearity are compared. These measures are the wave steepening factor and a skewness estimate. The wave steepening factor is a measure of how much nonlinear waveform steepening has occurred in a waveform. The skewness estimate is the skewness …


Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer Dec 2012

Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer

Graduate Theses and Dissertations

Advances in material science have resulted in the development of electrically nonlinear high dielectric thin film ferroelectrics, which have led to new opportunities for the creation of novel devices. This dissertation investigated one such device: a low voltage nonlinear transmission line (NLTL). A finite element simulation of ferroelectric transmission lines showed that NLTLs are capable of creating shockwaves. Additionally, if the losses are kept sufficiently low, it was shown that voltage gain should be possible. Furthermore, a method of accounting for material dispersion was developed. Results from simulations including material dispersion showed that temporal solitons might be possible from a …


Multidimensional Spectroscopy Of Semiconductor Quantum Dots, Jason Michael Bylsma Mar 2012

Multidimensional Spectroscopy Of Semiconductor Quantum Dots, Jason Michael Bylsma

USF Tampa Graduate Theses and Dissertations

The coherent properties of semiconductor nanostructures are inherently difficult to measure and one-dimensional spectroscopies are often unable to separate inhomogeneous and homogeneous linewidths. We have refined and improved a method of performing multidimensional Fourier transform spectroscopy based on four-wave

mixing (FWM) experiments in the box geometry. We have modified our system with broadband beamsplitters in all interferometer arms, high-resolution translation stages and the ability to work in reflection geometry. By improving the phase-stability of our setup and scanning pulse delays with sub-optical cycle precision, we are able to

reproduce 2DFT spectra of GaAs multiple quantum wells. With the FWM signal …


On The Influence Of Damping In Hyperbolic Equations With Parabolic Degeneracy, Ralph Saxton, Katarzyna Saxton Dec 2011

On The Influence Of Damping In Hyperbolic Equations With Parabolic Degeneracy, Ralph Saxton, Katarzyna Saxton

Ralph Saxton

This paper examines the effect of damping on a nonstrictly hyperbolic 2x2 system. It is shown that the growth of singularities is not restricted as in the strictly hyperbolic case where dissipation can be strong enough to preserve the smoothness of solutions globally in time. Here, irrespective of the stabilizing properties of damping, solutions are found to break down in finite time on a line where two eigenvalues coincide in state space.


A Test Of Bell’S Inequality For The Undergraduate Laboratory, Burton A. Betchart Jan 2004

A Test Of Bell’S Inequality For The Undergraduate Laboratory, Burton A. Betchart

Honors Papers

The thesis documents the work done over the year to initiate an undergraduate Advanced Laboratory experiment which tests Bell’s inequality. It provides reference theory for the experiment, including explanations of Bell inequalities, basics of nonlinear optics, type-I downconversion and entanglement, and polarization states of the entangled photons. A main result is the equipment and design proposal for the experiment, which will cost a total $19600, led in price by the $9000 of a four photodetector array and followed by the $5000 of a 405nm pump laser. Entangled photons are produced by pumping BBO in a two-crystal geometry. Although most of …


Three-Dimensional Nonlinear Evolution Ofequatorial Ionospheric Spread-F Bubbles, M. J. Keskinen, S. L. Ossakow, Bela G. Fejer Aug 2003

Three-Dimensional Nonlinear Evolution Ofequatorial Ionospheric Spread-F Bubbles, M. J. Keskinen, S. L. Ossakow, Bela G. Fejer

Bela G. Fejer

[1] Using numerical simulation techniques, we present the first study of the three-dimensional nonlinear evolution of an equatorial spread-F bubble. The background ionosphere used to initialize the bubble evolution is computed using a time-dependent first-principles equatorial plasma fountain model together with a prereversal enhancement vertical drift model. We find that finite parallel conductivity effects slow down both the linear and nonlinear bubble evolution compared to the two-dimensional evolution. In addition we find that bubble-like structures with extremely sharp density gradients can be generated off the equator at equatorial anomaly latitudes in agreement with recent observations.


Nonlinear Front Evolution Of Hydrodynamic Chemical Waves In Vertical Cylinders, J. W. Wilder, D. A. Vasquez, Boyd F. Edwards Sep 1997

Nonlinear Front Evolution Of Hydrodynamic Chemical Waves In Vertical Cylinders, J. W. Wilder, D. A. Vasquez, Boyd F. Edwards

All Physics Faculty Publications

The nonlinear stability of three-dimensional reaction-diffusion fronts in vertical cylinders is considered using the viscous hydrodynamic fluid equations in the limit of infinite thermal diffusivity. A nonlinear front evolution equation is presented and used to examine the transition from nonaxisymmetric to axisymmetric convection observed in experiments performed in cylinders. Comparisons with experiments show excellent agreement in both the shape and speed of the front.


Nonlinear-Interaction Of A Detonation Vorticity Wave, D. G. Lasseigne, T. L. Jackson, M. Y. Hussaini Jan 1991

Nonlinear-Interaction Of A Detonation Vorticity Wave, D. G. Lasseigne, T. L. Jackson, M. Y. Hussaini

Mathematics & Statistics Faculty Publications

The interaction of an oblique, overdriven detonation wave with a vorticity disturbance is investigated by a direct two-dimensional numerical simulation using a multidomain, finite-difference solution of the compressible Euler equations. The results are compared to those of linear theory, which predict that the effect of exothermicity on the interaction is relatively small except possibly near a critical angle where linear theory no longer holds. It is found that the steady-state computational results whenever obtained in this study agree with the results of linear theory. However, for cases with incident angle near the critical angle, moderate disturbance amplitudes, and/or sudden transient …


Theory Of Spectral Asymmetries And Nonlinear Currentsin The Equatorial Electrojet, E. Kudeki, D. T. Farley, Bela G. Fejer Jan 1985

Theory Of Spectral Asymmetries And Nonlinear Currentsin The Equatorial Electrojet, E. Kudeki, D. T. Farley, Bela G. Fejer

Bela G. Fejer

The spectral up-down asymmetry of type 1 echoes returned from the equatorial electrojet irregularities is shown to be a consequence of the nonlinear development of the horizontally propagating large scale primary waves which dominate the k spectrum of the electrojet turbulence. The waves reduce the vertical electric polarization field of the electrojet and suffer second harmonic distortion as they grow. These effects together could cause an asymmetry exceeding 20% between the upward and downward components of the relative (to the ions) electron velocity associated with the primary waves. This asymmetry, which changes its direction from day to night as does …