Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Photoemission Electron Microscopy To Characterize Slow Light In A Photonic Crystal Line Defect, Theodore Stedmark, Rolf Könenkamp Jan 2019

Photoemission Electron Microscopy To Characterize Slow Light In A Photonic Crystal Line Defect, Theodore Stedmark, Rolf Könenkamp

Physics Faculty Publications and Presentations

Using femtosecond nonlinear photoemission electron microscopy (PEEM) we provide a detailed characterization of slow light in a small-size asymmetric photonic crystal structure. We show that PEEM is capable of providing a unique description of the light propagation in such structures by direct imaging of the guided mode. This noninvasive characterization technique allows modal properties such as effective index, phase velocities, and group velocities to be determined. Combining experimental results with finite element method simulation calculations, we study slow light phenomena in a photonic crystal defect mode, and we produce a comprehensive picture of the mechanisms behind it. Our results illustrate …


Structural Instability And Dynamic Emission Fluctuations In Zinc Oxide Random Lasers, Zachariah Peterson, Robert Campbell Word, Rolf Könenkamp Aug 2018

Structural Instability And Dynamic Emission Fluctuations In Zinc Oxide Random Lasers, Zachariah Peterson, Robert Campbell Word, Rolf Könenkamp

Physics Faculty Publications and Presentations

We report experimental results on the structural stability of optically pumped zinc oxide random lasers. We find that the lasing threshold is not entirely stable and depends on the accumulated light exposure received in pulsed optical pumping. We show that exposure levels below ∼1.5 kJ/cm2 improve the lasing efficiency and lower the lasing threshold. Beyond that value, however, lasing efficiency and threshold begin to degrade. Electron microscopy shows that the degradation is accompanied by morphological changes characteristic of melting. These changes become visible at an exposure of ∼0.7 kJ/cm2. We suggest that the melting is initially localized within nanometer areas …


Zno Nanoparticles Modulate The Ionic Transport And Voltage Regulation Of Lysenin Nanochannels, Sheenah L. Bryant, Josh E. Eixenberger, Steven Rossland, Holly Apsley, Connor Hoffman, Nisha Shrestha, Michael Mchugh, Alex Punnoose, Daniel Fologea Dec 2017

Zno Nanoparticles Modulate The Ionic Transport And Voltage Regulation Of Lysenin Nanochannels, Sheenah L. Bryant, Josh E. Eixenberger, Steven Rossland, Holly Apsley, Connor Hoffman, Nisha Shrestha, Michael Mchugh, Alex Punnoose, Daniel Fologea

Physics Faculty Publications and Presentations

Background: The insufficient understanding of unintended biological impacts from nanomaterials (NMs) represents a serious impediment to their use for scientific, technological, and medical applications. While previous studies have focused on understanding nanotoxicity effects mostly resulting from cellular internalization, recent work indicates that NMs may interfere with transmembrane transport mechanisms, hence enabling contributions to nanotoxicity by affecting key biological activities dependent on transmembrane transport. In this line of inquiry, we investigated the effects of charged nanoparticles (NPs) on the transport properties of lysenin, a pore-forming toxin that shares fundamental features with ion channels such as regulation and high transport rate.

Results: …


Confined Photonic Mode Propagation Observed In Photoemission Electron Microscopy, Theodore Stenmark, Robert Campbell Word, Rolf Konenkamp Dec 2017

Confined Photonic Mode Propagation Observed In Photoemission Electron Microscopy, Theodore Stenmark, Robert Campbell Word, Rolf Konenkamp

Physics Faculty Publications and Presentations

Using photoemission electron microscopy (PEEM) we present a comparative analysis of the wavelength dependence of propagating fields in a simple optical slab waveguide and a thin film photonic crystal W1-type waveguide. We utilize an interferometric imaging approach for light in the near-ultraviolet regime where a 2-photon process is required to produce photoelectron emission. The typical spatial resolution in these experiments is < 30 nm. Electromagnetic theory and finite element simulations are shown to be in good agreement with the experimental observations. Our results indicate that multiphoton PEEM is a useful sub-wavelength characterization technique in thin film optics.


Ion Transport Across Biological Membranes By Carborane-Capped Gold Nanoparticles, Marcin P. Grzelczak, Stephen P. Danks, Robert C. Klipp, Domagoj Belic, Adnana Zaulet, Casper Kunstmann-Olsen, Dan F. Bradley, Tatsuya Tsukuda, Clara ViñAs, Francesc Teixidor, Jonathan J. Abramson, Mathias Brust Nov 2017

Ion Transport Across Biological Membranes By Carborane-Capped Gold Nanoparticles, Marcin P. Grzelczak, Stephen P. Danks, Robert C. Klipp, Domagoj Belic, Adnana Zaulet, Casper Kunstmann-Olsen, Dan F. Bradley, Tatsuya Tsukuda, Clara ViñAs, Francesc Teixidor, Jonathan J. Abramson, Mathias Brust

Physics Faculty Publications and Presentations

Carborane-capped gold nanoparticles (Au/carborane NPs, 2–3 nm) can act as artificial ion transporters across biological membranes. The particles themselves are large hydrophobic anions that have the ability to disperse in aqueous media and to partition over both sides of a phospholipid bilayer membrane. Their presence therefore causes a membrane potential that is determined by the relative concentrations of particles on each side of the membrane according to the Nernst equation. The particles tend to adsorb to both sides of the membrane and can flip across if changes in membrane potential require their repartitioning. Such changes can be made either with …


Novel Magnetic And Optical Properties Of Sn1−XZnXO2 Nanoparticles, Nevil A. Franco, Kongara M. Reddy, Josh Eixenberger, Dmitri A. Tenne, Charles B. Hanna, Alex Punnoose May 2015

Novel Magnetic And Optical Properties Of Sn1−XZnXO2 Nanoparticles, Nevil A. Franco, Kongara M. Reddy, Josh Eixenberger, Dmitri A. Tenne, Charles B. Hanna, Alex Punnoose

Physics Faculty Publications and Presentations

In this work, we report on the effects of doping SnO2 nanoparticles with Zn2+ ions. A series of ∼2–3 nm sized Sn1−x ZnxO2 crystallite samples with 0 ≤ x ≤ 0.18 were synthesized using a forced hydrolysis method. Increasing dopant concentration caused systematic changes in the crystallite size, oxidation state of Sn, visible emission, and band gap of SnO2 nanoparticles. X-ray Diffraction studies confirmed the SnO2 phase purity and the absence of any impurity phases. Magnetic measurements at room temperature showed a weak ferromagnetic behavior characterized by an open hysteresis loop. Their …


Comparative Metal Oxide Nanoparticle Toxicity Using Embryonic Zebrafish, Leah C. Wehmas, Catherine Anders, Jordan Chess, Alex Punnoose, Cliff B. Pereira, Juliet A. Greenwood, Robert L. Tanguay Jan 2015

Comparative Metal Oxide Nanoparticle Toxicity Using Embryonic Zebrafish, Leah C. Wehmas, Catherine Anders, Jordan Chess, Alex Punnoose, Cliff B. Pereira, Juliet A. Greenwood, Robert L. Tanguay

Physics Faculty Publications and Presentations

Engineered metal oxide nanoparticles (MO NPs) are finding increasing utility in the medical fields as anticancer agents. Before validation of in vivo anticancer efficacy can occur, a better understanding of whole-animal toxicity is required. We compared the toxicity of seven widely used semiconductor MO NPs made from zinc oxide (ZnO), titanium dioxide, cerium dioxide and tin dioxide prepared in pure water and in synthetic seawater using a five-day embryonic zebrafish assay. We hypothesized that the toxicity of these engineered MO NPs would depend on physicochemical properties. Significant agglomeration of MO NPs in aqueous solutions is common making it challenging to …


Cytotoxicity Of Zno Nanoparticles Can Be Tailored By Modifying Their Surface Structure: A Green Chemistry Approach For Safer Nanomaterials, Alex Punnoose, Kelsey Dodge, John W. Rasmussen, Jordan Chess, Denise Wingett, Catherine Anders May 2014

Cytotoxicity Of Zno Nanoparticles Can Be Tailored By Modifying Their Surface Structure: A Green Chemistry Approach For Safer Nanomaterials, Alex Punnoose, Kelsey Dodge, John W. Rasmussen, Jordan Chess, Denise Wingett, Catherine Anders

Physics Faculty Publications and Presentations

ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor …


Magnetism Of Zn-Doped Sno2: Role Of Surfaces, Pushpa Raghani, Balaji Ramanujam May 2014

Magnetism Of Zn-Doped Sno2: Role Of Surfaces, Pushpa Raghani, Balaji Ramanujam

Physics Faculty Publications and Presentations

Surface effects on the magnetization of Zn-doped SnO2 are investigated using first principles method. Magnetic behavior of Zn-doped bulk and highest and lowest energy surfaces—(001) and (110), respectively, are investigated in presence and absence of other intrinsic defects. The Zn-doped (110) and (001) surfaces of SnO2 show appreciable increase in the magnetic moment (MM) compared to Zn-doped bulk SnO2. Formation energies of Zn defects on both the surfaces are found to be lower than those in bulk SnO2. Zn doping favors the formation of oxygen vacancies. The density of states analysis on the Zn-doped …


Effects Of Extraneous Surface Charges On The Enhanced Raman Scattering From Metallic Nanoparticles, H. Y. Chung, P. T. Leung, D. P. Tsai Jun 2013

Effects Of Extraneous Surface Charges On The Enhanced Raman Scattering From Metallic Nanoparticles, H. Y. Chung, P. T. Leung, D. P. Tsai

Physics Faculty Publications and Presentations

Motivating by recent experiments on surface enhanced Raman scattering (SERS) from colloidal solutions, we present here a simple model to elucidate the effects of extraneous surface charges on the enhanced Raman signal. The model is based on the well-established Gersten-Nitzan model coupled to the modified Mie scattering theory of Bohren and Hunt in the long wavelength approximation. We further introduce corrections from the modified long wavelength approximation to the Gersten-Nitzan model for the improvement of its accuracy. Our results show that the surface charge will generally lead to a blueshift in the resonance frequency and greater enhancements in the SERS …


Magnetic Properties Of Fe Doped, Co Doped, And Fe+Co Co-Doped Zno, J. J. Beltrán, J. A. Osorio, C. A. Barrero, Charles B. Hanna, A. Punnoose May 2013

Magnetic Properties Of Fe Doped, Co Doped, And Fe+Co Co-Doped Zno, J. J. Beltrán, J. A. Osorio, C. A. Barrero, Charles B. Hanna, A. Punnoose

Physics Faculty Publications and Presentations

The structural, electronic, and magnetic properties of Zn0.95Co0.05O, Zn0.95Fe0.05O, and Zn0.90Fe0.05Co0.05O nanoparticles prepared by a sol-gel method are presented and discussed. X-ray diffraction and optical analysis indicated that high spin Co2+ ions substitute for the Zn2+ ions in tetrahedral sites. 57Fe Mössbauer spectroscopy showed the presence of isolated paramagnetic Fe3+ ions in both Fe doped and Fe+Co co-doped ZnO, however, no evidence of ferromagnetically ordered Fe3+ ions is observed. In the Zn0.95Fe0.05O sample, weak presence of ZnFe …


Decay Rates Of A Molecule In The Vicinity Of A Spherical Surface Of An Isotropic Magnetodielectric Material, H. Y. Chung, P.T. Leung, D. P. Tsai Oct 2012

Decay Rates Of A Molecule In The Vicinity Of A Spherical Surface Of An Isotropic Magnetodielectric Material, H. Y. Chung, P.T. Leung, D. P. Tsai

Physics Faculty Publications and Presentations

A comprehensive study is presented on the decay rates of excited molecules in the vicinity of a magnetodielectric material of spherical geometry via electrodynamic modeling. Both the models based on a driven-damped harmonic oscillator and on energy transfers will be applied so that the total decay rates can be rigorously decomposed into the radiative and the nonradiative rates. Clarifications of the equivalence of these two models for arbitrary geometry will be provided. Different possible orientations and locations of the molecule are studied with the molecule being placed near a spherical particle or a cavity. Among other results, TE modes are …


Plasmonic Enhancement Of Forster Energy Transfer Between Two Molecules In The Vicinity Of A Metallic Nanoparticle: Nonlocal Optical Effects, P.T. Leung, H. Y. Xie, H. Y. Chung, D. P. Tsai Oct 2009

Plasmonic Enhancement Of Forster Energy Transfer Between Two Molecules In The Vicinity Of A Metallic Nanoparticle: Nonlocal Optical Effects, P.T. Leung, H. Y. Xie, H. Y. Chung, D. P. Tsai

Physics Faculty Publications and Presentations

The problem of Forster resonance energy transfer (FRET) between two molecules in the vicinity of a metallic nanoparticle such as a nanoshell is studied within a phenomenological model which takes into account the nonlocal optical response of the metal. This model allows for arbitrary locations and orientations of the two molecular dipoles with respect to the metal particle which can be of ultrasmall sizes (nm) and for which nonlocal effects are of high significance. In particular, for the nanoshell case, the molecules can be located both outside, both inside, or one inside and one outside the shell. Also, the case …