Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Search For Extreme Mass Ratio Inspirals Using Particle Swarm Optimization And Reduced Dimensionality Likelihoods, Xiao-Bo Zou, Soumya Mohanty, Hong-Gang Luo, Yu-Xiao Liu Apr 2024

Search For Extreme Mass Ratio Inspirals Using Particle Swarm Optimization And Reduced Dimensionality Likelihoods, Xiao-Bo Zou, Soumya Mohanty, Hong-Gang Luo, Yu-Xiao Liu

Physics and Astronomy Faculty Publications and Presentations

Extreme-mass-ratio inspirals (EMRIs) are significant observational targets for spaceborne gravitational wave detectors, namely, LISA, Taiji, and Tianqin, which involve the inspiral of stellar-mass compact objects into massive black holes (MBHs) with a mass range of approximately 104 ∼107𝑀⊙ . EMRIs are estimated to produce long-lived gravitational wave signals with more than 105 cycles before plunge, making them an ideal laboratory for exploring the strong-gravity properties of the spacetimes around the MBHs, stellar dynamics in galactic nuclei, and properties of the MBHs itself. However, the complexity of the waveform model, which involves the superposition of multiple harmonics, as well as the …


Swarm Intelligence Methods For Extreme Mass Ratio Inspiral Search: First Application Of Particle Swarm Optimization, Xiao-Bo Zou, Soumya D. Mohanty, Hong-Gang Luo, Yu-Xiao Liu Feb 2024

Swarm Intelligence Methods For Extreme Mass Ratio Inspiral Search: First Application Of Particle Swarm Optimization, Xiao-Bo Zou, Soumya D. Mohanty, Hong-Gang Luo, Yu-Xiao Liu

Physics and Astronomy Faculty Publications and Presentations

Swarm intelligence (SI) methods are nature-inspired metaheuristics for global optimization that exploit a coordinated stochastic search strategy by a group of agents. Particle swarm optimization (PSO) is an established SI method that has been applied successfully to the optimization of rugged high-dimensional likelihood functions, a problem that represents the main bottleneck across a variety of gravitational wave (GW) data analysis challenges. We present results from the first application of PSO to one of the most difficult of these challenges, namely the search for the Extreme Mass Ratio Inspiral (EMRI) in data from future spaceborne GW detectors such as LISA, Taiji, …


Laser Frequency Stabilization For Lisa, Andrew B. Parker, Andrew J. Sutton, Glenn De Vine Aug 2014

Laser Frequency Stabilization For Lisa, Andrew B. Parker, Andrew J. Sutton, Glenn De Vine

STAR Program Research Presentations

This research focuses on laser ranging developments for LISA (Laser Interferometer Space Antenna), a planned NASA-ESA gravitational wave detector in space. LISA will utilize precision laser interferometry to track the changes in separation between three satellites orbiting 5 million kilometers apart. Specifically, our goal is to investigate options for laser frequency stabilization. Previous research has shown that an optical cavity system can meet LISA's stability requirements, but these units are large and heavy, adding cost to the implementation. A heterodyne Mach-Zehnder interferometer could be integrated onto LISA’s existing optical bench, greatly reducing the weight, provided the interferometer meets the stability …


Event Rate Estimates For Lisa Extreme Mass Ratio Capture Sources, J. Gair, L. Barack, T. Creighton, C. Cutler, Shane L. Larson, E. S. Phinney, M. Vallisneri Oct 2004

Event Rate Estimates For Lisa Extreme Mass Ratio Capture Sources, J. Gair, L. Barack, T. Creighton, C. Cutler, Shane L. Larson, E. S. Phinney, M. Vallisneri

All Physics Faculty Publications

One of the most exciting prospects for the LISA gravitational wave observatory is the detection of gravitational radiation from the inspiral of a compact object into a supermassive black hole. The large inspiral parameter space and low amplitude of the signal make detection of these sources computationally challenging. We outline here a first-cut data analysis scheme that assumes realistic computational resources. In the context of this scheme, we estimate the signal-to-noise ratio that a source requires to pass our thresholds and be detected. Combining this with an estimate of the population of sources in the universe, we estimate the number …


Lisa Time-Delay Interferometry Zero-Signal Solution: Geometrical Properties, Massimo Tinto, Shane L. Larson Jan 2004

Lisa Time-Delay Interferometry Zero-Signal Solution: Geometrical Properties, Massimo Tinto, Shane L. Larson

All Physics Faculty Publications

Time-delay interferometry (TDI) is the data processing technique needed for generating interferometric combinations of data measured by the multiple Doppler readouts available onboard the three Laser Interferometer Space Antenna (LISA) spacecraft. Within the space of all possible interferometric combinations TDI can generate, we have derived a specific combination that has zero response to the gravitational wave signal, and called it the zero-signal solution (ZSS). This is a two-parameter family of linear combinations of the generators of the TDI space, and its response to a gravitational wave becomes null when these two parameters coincide with the values of the angles of …


Lisa, Binary Stars, And The Mass Of The Graviton, Curt Cutler, William A. Hiscock, Shane L. Larson Jan 2003

Lisa, Binary Stars, And The Mass Of The Graviton, Curt Cutler, William A. Hiscock, Shane L. Larson

All Physics Faculty Publications

We extend and improve earlier estimates of the ability of the proposed LISA (Laser Interferometer Space Antenna) gravitational wave detector to place upper bounds on the graviton mass mg by comparing the arrival times of gravitational and electromagnetic signals from binary star systems. We show that the best possible limit on mg obtainable this way is ∼50 times better than the current limit set by solar system measurements. Among currently known, well-understood binaries, 4U1820-30 is the best for this purpose; LISA observations of 4U1820-30 should yield a limit ≈3-4 times better than the present solar system bound. AM …


Lisa Data Analysis: Doppler Demodulation, Neil J. Cornish, Shane L. Larson Jan 2003

Lisa Data Analysis: Doppler Demodulation, Neil J. Cornish, Shane L. Larson

All Physics Faculty Publications

The orbital motion of the Laser Interferometer Space Antenna (LISA) produces amplitude, phaseand frequency modulation of a gravitational wave signal. The modulations have the effect of spreading a monochromatic gravitational wave signal across a range of frequencies. The modulations encode useful information about the source location and orientation, but they also have the deleteriousaffect of spreading a signal across a wide bandwidth, thereby reducing the strength of the signalrelative to the instrument noise. We describe a simple method for removing the dominant, Doppler,component of the signal modulation. The demodulation reassembles the power from a monochromatic source into a narrow spike, …


Lisa Data Analysis: Source Identification And Subtraction, Neil J. Cornish, Shane L. Larson Jan 2003

Lisa Data Analysis: Source Identification And Subtraction, Neil J. Cornish, Shane L. Larson

All Physics Faculty Publications

The Laser Interferometer Space Antenna will operate as an AM-FM receiver for gravitational waves. For binary systems, the source location, orientation and orbital phase are encoded in the amplitude and frequency modulation. The same modulations spread a monochromatic signal over a range of frequencies, making it difficult to identify individual sources. We present a method for detecting and subtracting individual binary signals from a data stream with many overlapping signals.


The Lisa Optimal Sensitivity, Thomas A. Prince, Massimo Tinto, Shane L. Larson, J. W. Armstrong Jan 2002

The Lisa Optimal Sensitivity, Thomas A. Prince, Massimo Tinto, Shane L. Larson, J. W. Armstrong

All Physics Faculty Publications

The multiple Doppler readouts available on the Laser Interferometer Space Antenna (LISA) permit simultaneous formation of several interferometric observables. All these observables are independent of laser frequency fluctuations and have different couplings to gravitational waves and to the various LISA instrumental noises. Within the functional space of interferometric combinations LISA will be able to synthesize, we have identified a triplet of interferometric combinations that show optimally combined sensitivity. As an application of the method, we computed the sensitivity improvement for sinusoidal sources in the nominal, equal-arm LISA configuration. In the part of the Fourier band where the period of the …