Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Analysis Of Adsorbed Contaminants Of Caf/Sub 2/ Surfaces By Infrared Laser Induced Desorption, Jinmei Fu, Yamini Surapaneni, Susan D. Allen Sep 2004

Analysis Of Adsorbed Contaminants Of Caf/Sub 2/ Surfaces By Infrared Laser Induced Desorption, Jinmei Fu, Yamini Surapaneni, Susan D. Allen

Mechanical Engineering - Daytona Beach

157 nm photolithography technologies are currently under development and have been accepted as the leading candidate for fabrication of the next generation semiconductor devices after 193 nm. At this and shorter wavelengths, molecular contamination of surfaces becomes a serious problem as almost all molecules absorb at 157 nm and below. The light transmitted by a photolithographic tool can be significantly decreased by the presence of a few monolayers adsorbed on its many optical surfaces. We have developed a laser induced desorption, electron impact ionization, time-of-flight mass spectrometer (LID TOFMS) to study contaminants on 157nm and other ultraviolet optics, e.g., polished …


Breakup Of H₂ In Singly Ionizing Collisions With Fast Protons: Channel-Selective Low-Energy Electron Spectra, Christina Dimopoulou, Robert Moshammer, Daniel Fischer, C. Hohr, Alexander Dorn, Pablo Daniel Fainstein, Jose R. Crespo Lopez-Urrutia, Claus Dieter Schroter, Holger Kollmus, Rido Mann, Siegbert Hagmann, Joachim Hermann Ullrich Sep 2004

Breakup Of H₂ In Singly Ionizing Collisions With Fast Protons: Channel-Selective Low-Energy Electron Spectra, Christina Dimopoulou, Robert Moshammer, Daniel Fischer, C. Hohr, Alexander Dorn, Pablo Daniel Fainstein, Jose R. Crespo Lopez-Urrutia, Claus Dieter Schroter, Holger Kollmus, Rido Mann, Siegbert Hagmann, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

The dissociation of H2 in singly ionizing collisions with fast protons was analyzed using channel-selective low-energy electron spectra. Dissociative and nondissociative single ionization of H2 by 6MeV proton impact was described in a kinematically by determining momentum vectors of electron and H+ fragment of H2+ target ion, respectively. The electron spectra exhibited role of autoionization of doubly and singly excited states of H2. The doubly and singly excited states of H2 involve coupling between electronic and nuclear motion of molecule.