Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Effects Of Multitemperature Nonequilibrium On Compressible Homogeneous Turbulence, Wei Liao, Yan Peng, Li-Shi Luo Jan 2010

Effects Of Multitemperature Nonequilibrium On Compressible Homogeneous Turbulence, Wei Liao, Yan Peng, Li-Shi Luo

Mathematics & Statistics Faculty Publications

We study the effects of the rotational-translational energy exchange on the compressible decaying homogeneous isotropic turbulence (DHIT) in three dimensions through direct numerical simulations. We use the gas-kinetic scheme coupled with multitemperature nonequilibrium based on the Jeans-Landau-Teller model. We investigate the effects of the relaxation time of rotational temperature, ZR, and the initial ratio of the rotational and translational temperatures, TR0 / TL0, on the dynamics of various turbulence statistics including the kinetic energy K (t), the dissipation rate ε (t), the energy spectrum E (k,t), the root mean square of the velocity divergence θ′ …


Gas-Kinetic Schemes For Direct Numerical Simulations Of Compressible Homogeneous Turbulence, Wei Liao, Yan Peng, Li-Shi Luo Jan 2009

Gas-Kinetic Schemes For Direct Numerical Simulations Of Compressible Homogeneous Turbulence, Wei Liao, Yan Peng, Li-Shi Luo

Mathematics & Statistics Faculty Publications

We apply the gas-kinetic scheme (GKS) for the direct numerical simulations (DNSs) of compressible decaying homogeneous isotropic turbulence (DHIT). We intend to study the accuracy, stability, and efficiency of the gas-kinetic scheme for DNS of compressible homogeneous turbulence depending on both flow conditions and numerics. In particular, we study the GKS with multidimensional, quasi-one-dimensional, dimensional-splitting, and smooth-flow approximations. We simulate the compressible DHIT with the Taylor microscale Reynolds number Reλ =72.0 and the turbulence Mach number Mat between 0.1 and 0.6. We compute the low-order statistical quantities including the total kinetic energy K (t), the dissipation rate ε (t), …


Discrete Velocity Fields With Explicitly Computable Lagrangian Law, Curtis D. Bennett, Craig L. Zirbel Jan 2003

Discrete Velocity Fields With Explicitly Computable Lagrangian Law, Curtis D. Bennett, Craig L. Zirbel

Mathematics Faculty Works

We introduce a class of random velocity fields on the periodic lattice and in discrete time having a certain hidden Markov structure. The generalized Lagrangian velocity (the velocity field as viewed from the location of a single moving particle) has similar hidden Markov structure, and its law is found explicitly. Its rate of convergence to equilibrium is studied in small numerical examples and in rigorous results giving absolute and relative bounds on the size of the second–largest eigenvalue modulus. The effect of molecular diffusion on the rate of convergence is also investigated; in some cases it slows convergence to equilibrium. …