Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Magnetocaloric Effect Near Room Temperature In Quintenary And Sextenary Heusler Alloys, Benjamin D. White, R. I. Barabash, O. M. Barabash, I. Jeon, M. B. Maple Oct 2019

Magnetocaloric Effect Near Room Temperature In Quintenary And Sextenary Heusler Alloys, Benjamin D. White, R. I. Barabash, O. M. Barabash, I. Jeon, M. B. Maple

All Faculty Scholarship for the College of the Sciences

An inverse magnetocaloric effect is studied in Ni2Mn1+xX1-x-type Heusler alloys. Principally known for their shape-memory properties, these alloys also exhibit significant entropy and temperature changes (ΔS and ΔTAd, respectively) under adiabatic conditions when a modest magnetic field is applied. We investigated the impact on magnetocaloric properties of introducing substantial chemical disorder on the X-site (X = Si, Ga, In), of replacing Ni with nonmagnetic Ag, and of replacing a small amount of Mn with Gd. While a reduction in ΔS is observed in the first two cases, we observe a significant enhancement …


Unusual Perpendicular Anisotropy In Co2Tisi Films, Yunlong Jin, Shah R. Valloppilly, Parashu R. Kharel, Rohit Pathak, Arti Kashyap, Ralph Skomski, David J. Sellmyer Jan 2019

Unusual Perpendicular Anisotropy In Co2Tisi Films, Yunlong Jin, Shah R. Valloppilly, Parashu R. Kharel, Rohit Pathak, Arti Kashyap, Ralph Skomski, David J. Sellmyer

David Sellmyer Publications

Thin films of Co2TiSi on MgO are investigated experimentally and theoretically. The films were produced by magnetron sputtering on MgO(001) and have a thickness of about 100 nm. As bulk Co2TiSi, they crystallize in the normal cubic Heusler (L21) structure, but the films are slightly distorted (c/a = 1.0014) and contain some antisite disorder. The films exhibit a robust perpendicular anisotropy of 0.5 MJ m3. This result is surprising for several reasons. First, surface and interface anisotropies are too small to explain perpendicular anisotropy in such rather thick …