Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Recent Advances In Electronic And Optoelectronic Devices Based On Two-Dimensional Transition Metal Dichalcogenides, Mingxiao Ye, Dongyan Zhang, Yoke Khin Yap Jun 2017

Recent Advances In Electronic And Optoelectronic Devices Based On Two-Dimensional Transition Metal Dichalcogenides, Mingxiao Ye, Dongyan Zhang, Yoke Khin Yap

Department of Physics Publications

Two-dimensional transition metal dichalcogenides (2D TMDCs) offer several attractive features for use in next-generation electronic and optoelectronic devices. Device applications of TMDCs have gained much research interest, and significant advancement has been recorded. In this review, the overall research advancement in electronic and optoelectronic devices based on TMDCs are summarized and discussed. In particular, we focus on evaluating field effect transistors (FETs), photovoltaic cells, light-emitting diodes (LEDs), photodetectors, lasers, and integrated circuits (ICs) using TMDCs.


Heterojunction Metal-Oxide-Metal Au-Fe3O4-Au Single Nanowire Device For Spintronics, K. M. Reddy, Nitin P. Padture, Alex Punnoose, Charles Hanna May 2015

Heterojunction Metal-Oxide-Metal Au-Fe3O4-Au Single Nanowire Device For Spintronics, K. M. Reddy, Nitin P. Padture, Alex Punnoose, Charles Hanna

Physics Faculty Publications and Presentations

In this report, we present the synthesis of heterojunction magnetite nanowires in alumina template and describe magnetic and electrical properties from a single nanowire device for spintronics applications. Heterojunction Au-Fe-Au nanowire arrays were electrodeposited in porous aluminum oxide templates, and an extensive and controlled heat treatment process converted Fe segment to nanocrystalline cubic magnetite phase with well-defined Au-Fe3O4 interfaces as confirmed by the transmission electron microscopy. Magnetic measurements revealed Verwey transition shoulder around 120 K and a room temperature coercive field of 90 Oe. Current–voltage (I-V) characteristics of a single Au-Fe3O4-Au nanowire have …


Zno Nanoneedle/H2o Solid-Liquid Heterojunction-Based Self-Powered Ultraviolet Detector, Qinghao Li, Lin Wei, Yanru Xie, Kai Zhang, Lei Liu, Dapeng Zhu, Jun Jiao, Yanxue Chen, Shishen Yan, Guolei Liu, Liangmo Mei Oct 2013

Zno Nanoneedle/H2o Solid-Liquid Heterojunction-Based Self-Powered Ultraviolet Detector, Qinghao Li, Lin Wei, Yanru Xie, Kai Zhang, Lei Liu, Dapeng Zhu, Jun Jiao, Yanxue Chen, Shishen Yan, Guolei Liu, Liangmo Mei

Physics Faculty Publications and Presentations

ZnO nanoneedle arrays were grown vertically on a fluorine-doped tin oxide-coated glass by hydrothermal method at a relatively low temperature. A self-powered photoelectrochemical cell-type UV detector was fabricated using the ZnO nanoneedles as the active photoanode and H2O as the electrolyte. This solid-liquid heterojunction offers an enlarged ZnO/water contact area and a direct pathway for electron transport simultaneously. By connecting this UV photodetector to an ammeter, the intensity of UV light can be quantified using the output short-circuit photocurrent without a power source. High photosensitivity, excellent spectral selectivity, and fast photoresponse at zero bias are observed in this UV detector. …


Hetero-Junctions Of Boron Nitride And Carbon Nanotubes: Synthesis And Characterization, Yoke Khin Yap Mar 2013

Hetero-Junctions Of Boron Nitride And Carbon Nanotubes: Synthesis And Characterization, Yoke Khin Yap

Department of Physics Publications

Hetero-junctions of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) are expected to have appealing new properties that are not available from pure BNNTs and CNTs. Theoretical studies indicate that BNNT/CNT junctions could be multifunctional and applicable as memory, spintronic, electronic, and photonics devices with tunable band structures. This will lead to energy and material efficient multifunctional devices that will be beneficial to the society. However, experimental realization of BNNT/CNT junctions was hindered by the absent of a common growth technique for BNNTs and CNTs. In fact, the synthesis of BNNTs was very challenging and may involve high temperatures (up …


Direct Observation Of Spin-Polarized Surface States In The Parent Compound Of A Topological Insulator Using Spin- And Angle-Resolved Photoemission Spectroscopy In A Mott-Polarimetry Mode, David Hsieh, Lewis Andrew Wray, Dong Qian, Yuqi Xia, Jan Hugo Dil, Fabian Meier, Luc Patthey, Jurg Osterwalder, Gustav Bihlmayer, Yew San Hor, Robert Joseph Cava, Md Zahid Hasan Dec 2010

Direct Observation Of Spin-Polarized Surface States In The Parent Compound Of A Topological Insulator Using Spin- And Angle-Resolved Photoemission Spectroscopy In A Mott-Polarimetry Mode, David Hsieh, Lewis Andrew Wray, Dong Qian, Yuqi Xia, Jan Hugo Dil, Fabian Meier, Luc Patthey, Jurg Osterwalder, Gustav Bihlmayer, Yew San Hor, Robert Joseph Cava, Md Zahid Hasan

Physics Faculty Research & Creative Works

We report high-resolution spin-resolved photoemission spectroscopy (spin-ARPES) measurements on the parent compound Sb of the recently discovered three-dimensional topological insulator Bi1-xSbx (Hsieh et al 2008 Nature 452 970, Hsieh et al 2009 Science 323 919). By modulating the incident photon energy, we are able to map both the bulk and the (111) surface band structure, from which we directly demonstrate that the surface bands are spin polarized by the spin-orbit interaction and connect the bulk valence and conduction bands in a topologically non-trivial way. A unique asymmetric Dirac surface state gives rise to a k-splitting of its …


Evolution Of The Band Structure Of Β-In2 S3−3x O3x Buffer Layer With Its Oxygen Content, N. Barreau, S. Marsillac, J. C. Bernède, L. Assmann May 2003

Evolution Of The Band Structure Of Β-In2 S3−3x O3x Buffer Layer With Its Oxygen Content, N. Barreau, S. Marsillac, J. C. Bernède, L. Assmann

Electrical & Computer Engineering Faculty Publications

The evolution of the band structure of β-In2 S3−3x O3x (BISO) thin films grown by physical vapor deposition, with composition x, is investigated using x-ray photoelectron spectroscopy. It is shown that the energy difference between the valence-band level and the Fermi level remains nearly constant as the optical band gap of the films increases. As a consequence, the difference between the conduction band level and the Fermi level increases as much as the optical band gap of the films. The calculation of the electronic affinity [ ] of the BISO thin films shows that it decreases linearly from 4.65 …


Low‐Cost Technique For Preparing N‐Sb2S3/P‐Si Heterojunction Solar Cells, O. Savadogo, K. C. Mandal Jul 1993

Low‐Cost Technique For Preparing N‐Sb2S3/P‐Si Heterojunction Solar Cells, O. Savadogo, K. C. Mandal

Faculty Publications

No abstract provided.