Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physics

Traveling-Wave Electrophoresis: 1d Model, Austin Green Dec 2020

Traveling-Wave Electrophoresis: 1d Model, Austin Green

Physics Capstone Projects

A 1D model of traveling-wave electrophoresis predicts that molecular diffusion raises the trapping threshold and that other physical properties of the species effect the trapping threshold as well. Small concentrations, below 5μM, raise the trapping threshold for high diffusivity species, resulting in a lower efficiency. Species with a mid-range electrophoretic mobility and diffusivity have their trapping threshold slightly lowered with an increase in concentration, leading to more particles traveling with the wave.


Velocity Plateaus In Traveling-Wave Electrophoresis, R. Correll, Boyd F. Edwards Oct 2012

Velocity Plateaus In Traveling-Wave Electrophoresis, R. Correll, Boyd F. Edwards

All Physics Faculty Publications

One-dimensional models are used to study traveling-wave electrophoresis, a tunable method for separating charged analytes. A traveling-electrode model reveals the mechanism for longitudinal oscillations. A stationary-electrode model explains the origin of mode-locked plateaus in the average velocity, predicts devil's staircases with nested Farey sequences, and reduces to a continuum sinusoidal model in the high electrode-density limit. © 2012 American Physical Society.


Fabrication And Performance Of A Microfluidic Traveling-Wave Electrophoresis System, K. D. Jo, J. E. Schiffbauer, Boyd F. Edwards, R. Lloyd Carroll, A. T. Timperman Feb 2012

Fabrication And Performance Of A Microfluidic Traveling-Wave Electrophoresis System, K. D. Jo, J. E. Schiffbauer, Boyd F. Edwards, R. Lloyd Carroll, A. T. Timperman

All Physics Faculty Publications

A microfluidic traveling-wave electrophoresis (TWE) system is reported that uses a locally defined traveling electric field wave within a microfluidic channel to achieve band transport and separation. Low voltages, over a range of-0.5 to +0.5 V, are used to avoid electrolysis and other detrimental redox reactions while the short distance between electrodes, ∼25 μm, provides high electric fields of ∼200 V cm -1. It is expected that the low voltage requirements will simplify the future development of smaller portable devices. The TWE device uses four interdigitated electrode arrays: one interdigitated electrode array pair is on the top of the …


Electrokinetic Properties Of Lipid And Sarcoplasmic Reticulum Membranes In Aqueous Electrolyte And In The Presence Of Lipophilic Ions, Laura Elizabeth Satterfield Jan 2012

Electrokinetic Properties Of Lipid And Sarcoplasmic Reticulum Membranes In Aqueous Electrolyte And In The Presence Of Lipophilic Ions, Laura Elizabeth Satterfield

Dissertations and Theses

The purpose of this study is the characterization of the membrane-water interfaces of both sarcoplasmic reticulum membrane (SR) and charged lipid bilayers under varied properties of the surrounding aqueous solution. In this work we studied the electrokinetic properties of liposomes and SR vesicles as well as the interaction of lipophilic ions with these membranes. The study of electrokinetic properties is based on the measurements of electrophoretic mobility of SR membrane vesicles and PC/PG liposomes. Electrophoretic mobility of SR vesicles was measured as a function of ionic strength for six pH values (pH 4.0, 4.7, 5.0, 6.0, 7.5, and 9.0). Electrophoretic …


A Cell Electrofusion Microfluidic Device Integrated With 3d Thin-Film Microelectrode Arrays, Ning Hu, Jun Yang, Shizhi Qian, Sang W. Joo, Xiaolin Zheng Jan 2011

A Cell Electrofusion Microfluidic Device Integrated With 3d Thin-Film Microelectrode Arrays, Ning Hu, Jun Yang, Shizhi Qian, Sang W. Joo, Xiaolin Zheng

Mechanical & Aerospace Engineering Faculty Publications

A microfluidic device integrated with 3D thin film microelectrode arrays wrapped around serpentine-shaped microchannel walls has been designed, fabricated and tested for cell electrofusion. Each microelectrode array has 1015 discrete microelectrodes patterned on each side wall, and the adjacent microelectrodes are separated by coplanar dielectric channel wall. The device was tested to electrofuse K562 cells under a relatively low voltage. Under an AC electric field applied between the pair of the microelectrode arrays, cells are paired at the edge of each discrete microelectrode due to the induced positive dielectrophoresis. Subsequently, electric pulse signals are sequentially applied between the microelectrode arrays …


Negative Dielectrophoretic Capture Of Bacterial Spores In Food Matrices, Mehti Koklu, Seungkyung Park, Suresh D. Pillai, Ali Beskok Sep 2010

Negative Dielectrophoretic Capture Of Bacterial Spores In Food Matrices, Mehti Koklu, Seungkyung Park, Suresh D. Pillai, Ali Beskok

Mechanical & Aerospace Engineering Faculty Publications

A microfluidic device with planar square electrodes is developed for capturing particles from high conductivity media using negative dielectrophoresis (n-DEP). Specifically, Bacillus subtilis and Clostridium sporogenes spores, and polystyrene particles are tested in NaCl solution (0.05 and 0.225 S/m), apple juice (0.225 S/m), and milk (0.525 S/m). Depending on the conductivity of the medium, the Joule heating produces electrothermal flow (ETF), which continuously circulates and transports the particles to the DEP capture sites. Combination of the ETF and n-DEP results in different particle capture efficiencies as a function of the conductivity. Utilizing 20 μm height DEP chambers, “almost complete” and …


Dielectrophoretic Choking Phenomenon In A Converging-Diverging Microchannel, Ye Ai, Shizhi Qian, Sheng Liu, Sang W. Joo Jan 2010

Dielectrophoretic Choking Phenomenon In A Converging-Diverging Microchannel, Ye Ai, Shizhi Qian, Sheng Liu, Sang W. Joo

Mechanical & Aerospace Engineering Faculty Publications

Experiments show that particles smaller than the throat size of converging-diverging microchannels can sometimes be trapped near the throat. This critical phenomenon is associated with the negative dc dielectrophoresis arising from nonuniform electric fields in the microchannels. A finite-element model, accounting for the particle-fluid-electric field interactions, is employed to investigate the conditions for this dielectrophoretic (DEP) choking in a converging-diverging microchannel for the first time. It is shown quantitatively that the DEP choking occurs for high nonuniformity of electric fields, high ratio of particle size to throat size, and high ratio of particle's zeta potential to that of microchannel. © …


Traveling-Wave Electrophoresis For Microfluidic Separations, Boyd F. Edwards, A. T. Timperman, R. Lloyd Carroll, K. Jo, J. M. Mease, J. E. Schiffbauer Feb 2009

Traveling-Wave Electrophoresis For Microfluidic Separations, Boyd F. Edwards, A. T. Timperman, R. Lloyd Carroll, K. Jo, J. M. Mease, J. E. Schiffbauer

All Physics Faculty Publications

Models and microfluidic experiments are presented of an electrophoretic separation technique in which charged particles whose mobilities exceed a tunable threshold are trapped between the crests of a longitudinal electric wave traveling through a stationary viscous fluid. The wave is created by applying periodic potentials to electrode arrays above and below a microchannel. Predicted average velocities agree with experiments and feature chaotic attractors for intermediate mobilities.


Dc Electrokinetic Transport Of Cylindrical Cells In Straight Microchannels, Ye Ai, Ali Beskok, David T. Gauthier, Sang W. Joo, Shizhi Qian Jan 2009

Dc Electrokinetic Transport Of Cylindrical Cells In Straight Microchannels, Ye Ai, Ali Beskok, David T. Gauthier, Sang W. Joo, Shizhi Qian

Biological Sciences Faculty Publications

Electrokinetic transport of cylindrical cells under dc electric fields in a straight microfluidic channel is experimentally and numerically investigated with emphasis on the dielectrophoretic (DEP) effect on their orientation variations. A two-dimensional multiphysics model, composed of the Navier-Stokes equations for the fluid flow and the Laplace equation for the electric potential defined in an arbitrary Lagrangian-Eulerian framework, is employed to capture the transient electrokinetic motion of cylindrical cells. The numerical predictions of the particle transport are in quantitative agreement with the obtained experimental results, suggesting that the DEP effect should be taken into account to study the electrokinetic transport of …


Electrophoretic Studies Of Ion Adsorption To Sarcoplasmic Reticulum And Phosphatidylcholine Membranes, Andreas Schilling Jul 1994

Electrophoretic Studies Of Ion Adsorption To Sarcoplasmic Reticulum And Phosphatidylcholine Membranes, Andreas Schilling

Dissertations and Theses

In this study, electrophoretic mobilities of native and two types of trypsin digested sarcoplasmic reticulum vesicles have been determined by microelectrophoresis using a Doppler Electrophoretic Light Scattering Analyzer to investigate the influence of hydrodynamic drag, caused by the Ca2+, Mg2+ -ATPase protruding from the surface of native sarcoplasmic reticulum vesicles. After the prolonged digestion (protein:trypsin ratio of 20 for 3 hours at 25°C), the ATPase was cleaved and removed from the sarcoplasmic reticulum membrane as shown with SDS gel electrophoresis and an ATPase activity assay. Ionic strength and pH dependence of mobility showed a nearly pH independent …