Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Electron temperature

All Physics Faculty Publications

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Time-Resolved Electron Temperature Measurement In A Highly-Excited Gold Target Usingfemtosecond Thermionic Emission, W. Y. Wang, D. Mark Riffe, Y. S. Lee, M. C. Downer Sep 1994

Time-Resolved Electron Temperature Measurement In A Highly-Excited Gold Target Usingfemtosecond Thermionic Emission, W. Y. Wang, D. Mark Riffe, Y. S. Lee, M. C. Downer

All Physics Faculty Publications

We report direct measurement of hot-electron temperatures and relaxation dynamics for peak electron temperatures between 3400 and 11 000 K utilizing two-pulse-correlation femtosecond (fs) thermionic emission. The fast relaxation times (<1.5 ps) are described by extending RT characterizations of the thermal conductivity, electron-phonon coupling, and electronic specific heat to these high electron temperatures.


Theoretical Study Of The Effect Of Ionospheric Return Currents On The Electron Temperature, Robert W. Schunk, Jan Josef Sojka, M. D. Bowline Jan 1987

Theoretical Study Of The Effect Of Ionospheric Return Currents On The Electron Temperature, Robert W. Schunk, Jan Josef Sojka, M. D. Bowline

All Physics Faculty Publications

An electron heat flow can occur in a partially ionized plasma in response to either an electron temperature gradient (thermal conduction) or an electron current (thermoelectric heat flow). The former process has been extensively studied, while the latter process has received relatively little attention. Therefore a time-dependent three-dimensional model of the high-latitude ionosphere was used to study the effect of field-aligned ionospheric return currents on auroral electron temperatures for different seasonal and solar cycle conditions as well as for different upper boundary heat fluxes. The results of this study lead to the following conclusions: (1) The average, large-scale, return current …


Theoretical Study Of The Electron Temperature In The High-Latitude Ionosphere For Solar Maximum And Winter Conditions, Robert W. Schunk, Jan Josef Sojka, M. D. Bowline Jan 1986

Theoretical Study Of The Electron Temperature In The High-Latitude Ionosphere For Solar Maximum And Winter Conditions, Robert W. Schunk, Jan Josef Sojka, M. D. Bowline

All Physics Faculty Publications

The electron temperature (Te) variation in the high-latitude ionosphere at altitudes between 120 and 800 km has been modeled for solar maximum, winter solstice, and strong magnetic activity conditions. The calculated electron temperatures are consistent with the plasma densities and ion temperatures computed from a time-dependent ionospheric model. Heating rates for both solar EUV and auroral precipitation were included. In general, the predicted UT variation of the electron temperature that results from the displacement between the magnetic and geographic poles is only a few hundred degrees. However, in sunlit trough regions, Te hot spots develop, and …