Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Screening And Plasma Oscillations In An Electron Gas In The Hydrodynamic Approximation, Eugene B. Kolomeisky, Joseph P. Straley Oct 2017

Screening And Plasma Oscillations In An Electron Gas In The Hydrodynamic Approximation, Eugene B. Kolomeisky, Joseph P. Straley

Physics and Astronomy Faculty Publications

A hydrodynamic theory of screening in a generic electron gas of arbitrary dimensionality is given that encompasses all previously studied cases and clarifies the predictions of the many-body approach. We find that long-wavelength plasma oscillations are classical phenomena with quantum-mechanical effects playing no explicit role. The character of the oscillations is solely dictated by the dimensionality of the electron system and its equation of state in the neutral limit. Materials whose excitations are described by the Dirac dispersion law—such as doped graphene or a Weyl semimetal—are no exception to this rule.


Structural Properties Of Ferroelectric Lead (Zirconium0.5,Titanium0.5)Oxygen3 Nanotube Array And Electronic Structure Of Lao Delta-Doped Strontium Titanate, Rajendra Prasad Adhikari Aug 2013

Structural Properties Of Ferroelectric Lead (Zirconium0.5,Titanium0.5)Oxygen3 Nanotube Array And Electronic Structure Of Lao Delta-Doped Strontium Titanate, Rajendra Prasad Adhikari

Graduate Theses and Dissertations

In this Dissertation we begin with two introductions on: 1) ferroelectricity and related phenomena, and 2) novel properties of Oxide electronics and the generation of two dimensional electron gas. We then give theoretical background of density functional theory (including LDA+U) and pseudopotentials. The first part of research work is about structural, polarization, and dielectric properties of ferroelectric Lead Zirconate Titanate (PZT) solid solution in the form of a nanotube array, embedded in a matrix medium of different ferroelectric strengths. We use the effective Hamiltonian derived from first-principles and finite-temperature Monte Carlo methods to determine the various properties. We revealed different …


Molecular Beam Epitaxy Of High Mobility In0.75Ga0.25As For Electron Spin Transport Applications, Paul J. Simmonds, S. N. Holmes, H. E. Beere, I. Farrer, F. Sfigakis, D. A. Ritchie, M. Pepper Jul 2009

Molecular Beam Epitaxy Of High Mobility In0.75Ga0.25As For Electron Spin Transport Applications, Paul J. Simmonds, S. N. Holmes, H. E. Beere, I. Farrer, F. Sfigakis, D. A. Ritchie, M. Pepper

Paul J. Simmonds

The authors describe the molecular beam epitaxy of relaxed, nominally undoped In0.75Ga0.25As–In0.75Al0.25As quantum well structures grown on InP substrates. The maximum two-dimensional electron density is 2 × 1011cm−2, with a peak mobility of 2.2 × 105cm2 V−1s−1 at 1.5K. In high magnetic field, the electron g-factor was shown to have a magnitude of 9.1 ± 0.1 at Landau-level filling factor of 4. The Rashba coefficient, determined from the analysis of the magnetoresistance at high Landau-level filling factor (>12), …


Dimer-Dimer Collisions At Finite Energies In Two-Component Fermi Gases, J P. D'Incao, Seth T. Rittenhouse, Nirav P. Mehta, Chris H. Greene Mar 2009

Dimer-Dimer Collisions At Finite Energies In Two-Component Fermi Gases, J P. D'Incao, Seth T. Rittenhouse, Nirav P. Mehta, Chris H. Greene

Physics and Astronomy Faculty Research

We discuss a major theoretical generalization of existing techniques for handling the three-body problem that accurately describes the interactions among four fermionic atoms. Application to a two-component Fermi gas accurately determines dimer-dimer scattering parameters at finite energies and can give deeper insight into the corresponding many-body phenomena. To account for finite temperature effects, we calculate the energydependent complex dimer-dimer scattering length, which includes contributions from elastic and inelastic collisions. Our results indicate that strong finite-energy effects and dimer dissociation are crucial for understanding the physics in the strongly interacting regime for typical experimental conditions. While our results for dimer-dimer relaxation …


Quantum Transport In In0.75Ga0.25As Quantum Wires, P. J. Simmonds, F. Sfigakis, H. E. Beere, D. A. Ritchie, M. Pepper, D. Anderson, G. A.C. Jones Apr 2008

Quantum Transport In In0.75Ga0.25As Quantum Wires, P. J. Simmonds, F. Sfigakis, H. E. Beere, D. A. Ritchie, M. Pepper, D. Anderson, G. A.C. Jones

Paul J. Simmonds

In addition to quantized conductance plateaus at integer multiples of 2e2/h, the differential conductance G=dI/dV shows plateaus at 0.25(2e2/h) and 0.75(2e2/h) under applied source-drain bias in In0.75Ga0.25As quantum wires defined by insulated split gates. This observation is consistent with a spin-gap model for the 0.7 structure. Using a tilted magnetic field to induce Landau level crossings, the g factor was measured to be ~9 by the coincidence method. This material, with a mobility of 1.8×105 cm …


Growth-Temperature Optimization For Low Carrier-Density In0.75Ga0.25As-Based High Electron Mobility Transistors On Inp, Paul J. Simmonds, H. E. Beere, D. A. Ritchie, S. N. Holmes Oct 2007

Growth-Temperature Optimization For Low Carrier-Density In0.75Ga0.25As-Based High Electron Mobility Transistors On Inp, Paul J. Simmonds, H. E. Beere, D. A. Ritchie, S. N. Holmes

Paul J. Simmonds

Two-dimensional electron gases (2DEGs) were formed in undoped In0.75Al0.25As / In0.75Ga0.25As / In0.75Al0.25As quantum wells. The optimal growth temperature for this structure is 410°C, with peak 2DEG electron mobility and density values of μ = 221000 cm2/V s and n = 1.36 × 1011 cm−2 at 1.5 K. This electron mobility is equal to the highest previously published for these undoped structures but with a factor of 2 reduction in n. This has been achieved through the use of a significantly thinner InAlAs …


Plasma Oscillations And Expansion Of An Ultracold Neutral Plasma, Scott D. Bergeson, S. Kulin, T. C. Killian, S. L. Rolston Jul 2000

Plasma Oscillations And Expansion Of An Ultracold Neutral Plasma, Scott D. Bergeson, S. Kulin, T. C. Killian, S. L. Rolston

Faculty Publications

We report the observation of plasma oscillations in an ultracold neutral plasma. With this collective mode we probe the electron density distribution and study the expansion of the plasma as a function of time. For classical plasma conditions, i.e., weak Coulomb coupling, the expansion is dominated by the pressure of the electron gas and is described by a hydrodynamic model. Discrepancies between the model and observations at low temperature and high density may be due to strong coupling of the electrons.