Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Decoherence And Recoherence In A Vibrating Rf Squid, Eyal Buks, M. P. Blencowe Nov 2006

Decoherence And Recoherence In A Vibrating Rf Squid, Eyal Buks, M. P. Blencowe

Dartmouth Scholarship

We study an rf SQUID, in which a section of the loop is a freely suspended beam that is allowed to oscillate mechanically. The coupling between the rf SQUID and the mechanical resonator originates from the dependence of the total magnetic flux threading the loop on the displacement of the resonator. Motion of the latter affects the visibility of Rabi oscillations between the two lowest energy states of the rf SQUID. We address the feasibility of experimental observation of decoherence and recoherence, namely decay and rise of the visibility, in such a system.


Transmission Electron Goniometry And Its Relation To Electron Tomography For Materials Science Apoplications, Peter Moeck, P. Fraundorf Nov 2006

Transmission Electron Goniometry And Its Relation To Electron Tomography For Materials Science Apoplications, Peter Moeck, P. Fraundorf

Physics Faculty Publications and Presentations

Aspects of transmission electron goniometry are discussed. Combined with high resolution phase contrast transmission electron microscopy (HRTEM) and atomic resolution scanning TEM (STEM) in the atomic number contrast (Z-STEM) or the phase contrast bright field mode, transmission electron goniometry offers the opportunity to develop dedicated methods for the crystallographic characterization of nanocrystals in three dimensions. The relationship between transmission electron goniometry and electron tomography for materials science applications is briefly discussed. Internet based java applets that facilitate the application of transmission electron goniometry for cubic crystals with calibrated tilt-rotation and double-tilt specimen holders/goniometers are mentioned. The so called cubic-minimalistic tilt …


Sound-Propagation Gap In Fluid Mixtures, Supurna Sinha, M. Cristina Marchetti May 2006

Sound-Propagation Gap In Fluid Mixtures, Supurna Sinha, M. Cristina Marchetti

Physics - All Scholarship

We discuss the behavior of the extended sound modes of a dense binary hard-sphere mixture. In a dense simple hard-sphere fluid the Enskog theory predicts a gap in the sound propagation at large wave vectors. In a binary mixture the gap is only present for low concentrations of one of the two species. At intermediate concentrations sound modes are always propagating. This behavior is not affected by the mass difference of the two species, but it only depends on the packing fractions. The gap is absent when the packing fractions are comparable and the mixture structurally resembles a metallic glass.


Mode-Coupling Theory Of The Stress-Tensor Autocorrelation Function Of A Dense Binary Fluid Mixture, Supurna Sinha, M. Cristina Marchetti May 2006

Mode-Coupling Theory Of The Stress-Tensor Autocorrelation Function Of A Dense Binary Fluid Mixture, Supurna Sinha, M. Cristina Marchetti

Physics - All Scholarship

We present a generalized mode-coupling theory for a dense binary fluid mixture. The theory is used to calculate molecular-scale renormalizations to the stress-tensor autocorrelation function (STAF) and to the long-wavelength zero-frequency shear viscosity. As in the case of a dense simple fluid, we find that the STAF appears to decay as t−3/2 over an intermediate range of time. The coefficient of this long-time tail

is more than two orders of magnitude larger than that obtained from conventional mode-coupling theory. Our study focuses on the effect of compositional disorder on the decay of the STAF in a dense mixture.