Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Characterization Of Fiber Bragg Grating Based, Geometry-Dependent, Magnetostrictive Composite Sensors, Edward Lynch Dec 2020

Characterization Of Fiber Bragg Grating Based, Geometry-Dependent, Magnetostrictive Composite Sensors, Edward Lynch

Theses and Dissertations

Optical sensors based on geometry dependent magnetostrictive composite, having potential applications in current sensing and magnetic field sensing are modeled and evaluated experimentally with an emphasis on their thermal immunity from thermal disturbances. Two sensor geometries composed of a fiber Bragg grating (FBG) embedded in a shaped Terfenol-D/epoxy composite material, which were previously prototyped and tested for magnetic field response, were investigated. When sensing magnetic fields or currents, the primary function of the magnetostrictive composite geometry is to modulate the magnetic flux such that a magnetostrictive strain gradient is induced on the embedded FBG. Simulations and thermal experiments reveal the …


Studies Of Tribotechnical Properties Of Composite Polymeric Materials Of Machine Designation, Tojiboy O. Almataev, Nozimbek T. Almataev Dec 2019

Studies Of Tribotechnical Properties Of Composite Polymeric Materials Of Machine Designation, Tojiboy O. Almataev, Nozimbek T. Almataev

Scientific Bulletin. Physical and Mathematical Research

In the given work are experimentally investigated tribotechnical properties as intensity of wear process and factor of a friction composite epoxy the polymeric materials processed by ultrasound. Results of influence of a kind and the maintenance loading on tribotechnical properties composite epoxy polymeric materials depending on modes of ultrasonic processing are received. Correlation dependence of intensity of wear process and factor of a friction composite epoxy coverings from modes of ultrasonic processing is established. It is shown in the work that with an increase in the duration of ultrasonic exposure, the wear rate and the friction coefficient of the coatings …


Radiation Tolerance In Nano-Structured Crystalline Fe(Cr)/Amorphous Sioc Composite, Qing Su, Tianyao Wang, Lin Shao, Michael Nastasi Jan 2019

Radiation Tolerance In Nano-Structured Crystalline Fe(Cr)/Amorphous Sioc Composite, Qing Su, Tianyao Wang, Lin Shao, Michael Nastasi

Nebraska Center for Materials and Nanoscience: Faculty Publications

The management of irradiation defects is one of key challenges for structural materials in current and future reactor systems. To develop radiation tolerant alloys for service in extreme irradiation environments, the Fe self-ion radiation response of nanocomposites composed of amorphous silicon oxycarbide (SiOC) and crystalline Fe(Cr) were examined at 10, 20, and 50 displacements per atom damage levels. Grain growth in width direction was observed to increase with increasing irradiation dose in both Fe(Cr) films and Fe(Cr) layers in the nanocomposite after irradiation at room temperature. However, compared to the Fe(Cr) film, the Fe(Cr) layers in the nanocomposite exhibited ~50% …


Charge Storage In Wo³ Polymorphs And Their Application As Supercapacitor Electrode Material, Vaibhav Lokhande, Abhishek Lokhande, Gon Namkoong, Jin Hyeok Kim, Taeksoo Ji Jan 2019

Charge Storage In Wo³ Polymorphs And Their Application As Supercapacitor Electrode Material, Vaibhav Lokhande, Abhishek Lokhande, Gon Namkoong, Jin Hyeok Kim, Taeksoo Ji

Electrical & Computer Engineering Faculty Publications

Tungsten oxide is a versatile material with different applications. It has many polymorphs with varying performance in energy storage application. We report simple and facile way to synthesize four phases of tungsten oxide from same precursor materials only by changing the pH and temperature values. Monoclinic, hexagonal, orthorhombic and tetragonal phase obtained, were analyzed and tested for supercapacitor application. The electrochemical analysis of four phases indicates that the hexagonal phase is best-suited electrode material for supercapacitor. The hexagonal phase exhibits higher specific capacitance (377.5 Fg-1 at 2 mVs-1), higher surface capacitive contribution (75%), better stability and rate …


Bragg Gratings In Polarization Maintaining Optical Fiber As Three Dimensional Strain Sensor, Joel Quintana Jan 2017

Bragg Gratings In Polarization Maintaining Optical Fiber As Three Dimensional Strain Sensor, Joel Quintana

Open Access Theses & Dissertations

Fiber-Bragg Gratings (FBG) for Structural Health Monitoring (SHM) have been studied extensively as they offer electrically passive operation, electromagnetic interference (EMI) immunity, high sensitivity and multiplexing as compared to conventional electric strain sensors. FBG sensors written within polarization maintaining (PM) optical fiber offer ad- ditional dimensions of strain measurement, greatly reducing the number of sensors needed to properly monitor a structure. This reduction however, adds complexity to the dis- crimination of the sensorâ??s optical response to its corresponding applied strains. This Dissertation defines the set of algorithms needed to measure planar strain using PM-FBGs exclusively. It defines the minimum number …


Phase Sensitive Thermography Of Magnetostrictive Materials Under Periodic Excitations, Peng Yang Aug 2016

Phase Sensitive Thermography Of Magnetostrictive Materials Under Periodic Excitations, Peng Yang

Theses and Dissertations

The use of giant magnetostrictive materials in actuator and sensor applications is still relatively new. Giant magnetostrictive materials, such as Terfenol-D, are unique in producing large deformation under a magnetic field. Applications of these materials in solid state actuators and transducers may require more knowledge on the interaction between geometry and material properties for a specific design. In order to gain more understanding of the magnetostriction mechanism, phase sensitive or lock-in thermography has been used to study Terfenol-D. Thermography is useful in that it allows for full field measurement of the surface of an object with a relatively simple setup. …


Investigating The Effect Of Carbon Nanotube Functionalization In A Polydimethylsiloxane Composite Through Use Of A Stepped Bar Apparatus, Matthew I. Ralphs May 2016

Investigating The Effect Of Carbon Nanotube Functionalization In A Polydimethylsiloxane Composite Through Use Of A Stepped Bar Apparatus, Matthew I. Ralphs

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Thermal interface materials (TIMs) are used in transporting heat away from a circuit or electronic module. Composite materials are a popular research area for TIMs because they allow the desired properties to be joined in a composite to take advantage of the best properties from all the constituents involved. The composite selected for this study uses carbon nanotubes (CNT) as the filler and an elastomeric polymer for the matrix, specifically a multiwalled carbon nanotube (MWCNT) / polydimethylsiloxane (PDMS) composite. This study looks at chemical modification (functionalization) of the CNTin an effort to produce a better bond between the CNT and …


Synthesis And Properties Of Polymer Nanocomposites With Tunable Electromagnetic Response, Kristen Lee Stojak Jan 2013

Synthesis And Properties Of Polymer Nanocomposites With Tunable Electromagnetic Response, Kristen Lee Stojak

USF Tampa Graduate Theses and Dissertations

Multifunctional polymer nanocomposites (PNCs) are attractive for the design of tunable RF and microwave components such as flexible electronics, attenuators, and antennas due to cost-effectiveness and durability of polymeric matrices. In this work, three separate PNCs were synthesized. Magnetite (Fe3O4) and cobalt ferrite (CFO) nanoparticles, synthesized by thermal decomposition, were used as PNC fillers. Polymers used in this work were a commercial polymer provided by the Rogers Corporation (RP) and polyvinylidene fluoride (PVDF). PNCs in this thesis consist of Fe3O4 in RP, CFO in RP, and Fe3O4 in PVDF. Characterization techniques for determining morphology of the nanoparticles, and their resulting …