Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Introducing The Newton-Poisson-Brillouin Model In The Quest For Plasmons In Metallic Carbon Nanotubes, Richard P. Zannoni Nov 2014

Introducing The Newton-Poisson-Brillouin Model In The Quest For Plasmons In Metallic Carbon Nanotubes, Richard P. Zannoni

Doctoral Dissertations

A new method is presented to model carbon nanotubes (CNT) of micron length. The Newton-Poisson-Brillouin (NPB) model uses Newtonian physics to model the interaction of a population of thermally excited quasi-particles. The NPB model is self-consistent with Poisson’s equation, and the quasi-particles are confined to the CNT’s band structure. In this work, we explore the parameter space of the model.


Functionalizing Carbon Nanotube Forests With 1,5-Diaminoaphthalene, Ben Pound, T. Shen Sep 2014

Functionalizing Carbon Nanotube Forests With 1,5-Diaminoaphthalene, Ben Pound, T. Shen

Ben Pound

Carbon Nanotube (CNT) Forests are vertically grown carbon nanotubes. They can be as tall as millimeters, with radii from less than one nanometer (single-walled) to tens of nanometers (multi-walled). Their high surface area to volume ratio provides a unique material system for biosensor applications. However, the CNT surface does not provide covalent bonding sites to many antibodies of interest. One approach is to attach linker molecules with aromatic rings via π-stacking to the CNT surface and activating the linker molecules to bind covalently to specific antibody molecules. Unfortunately, the conventional solution-based functionalization approach often leads to collapse of the CNT …


Functionalizing Carbon Nanotube Forests With 1,5-Diaminoaphthalene, Ben Pound, T. -C. Shen Feb 2014

Functionalizing Carbon Nanotube Forests With 1,5-Diaminoaphthalene, Ben Pound, T. -C. Shen

UCUR

Carbon Nanotube (CNT) Forests are vertically grown carbon nanotubes. They can be as tall as millimeters, with radii from less than one nanometer (single-walled) to tens of nanometers (multi-walled). Their high surface area to volume ratio provides a unique material system for biosensor applications. However, the CNT surface does not provide covalent bonding sites to many antibodies of interest. One approach is to attach linker molecules with aromatic rings via π-stacking to the CNT surface and activating the linker molecules to bind covalently to specific antibody molecules. Unfortunately, the conventional solution-based functionalization approach often leads to collapse of the CNT …


Temperature And Frequency Dependent Conduction Mechanisms Within Bulk Carbon Nanotube Materials, John Simmons Bulmer Jan 2010

Temperature And Frequency Dependent Conduction Mechanisms Within Bulk Carbon Nanotube Materials, John Simmons Bulmer

Browse all Theses and Dissertations

The resistance of three types of bulk carbon nanotube (CNT) materials (floating catalyst CNT yarn, forest grown CNT yarn, and super acid spun CNT fiber) was measured from room temperature to 900 C. Fitting the curves to established conduction equations for disordered materials, competing conduction mechanisms pertaining to the material could be determined. Floating catalyst CNT yarn displayed both semiconductive and metallic isotropic behavior with a resistance minimum, similar to the behavior of crystalline graphite. It was found that, at room temperature, the semiconducting contribution-most likely junctions between CNTs-accounted for 99.99% of the overall resistance. The resistance of forest grown …


Ostwald Ripening Of Iron (Fe) Catalyst Nanoparticles On Aluminum Oxide Surfaces (Al2O3) For The Growth Of Carbon Nanotubes, Roberto I. Acosta Jan 2010

Ostwald Ripening Of Iron (Fe) Catalyst Nanoparticles On Aluminum Oxide Surfaces (Al2O3) For The Growth Of Carbon Nanotubes, Roberto I. Acosta

Browse all Theses and Dissertations

Theoretical models have proposed that the nucleation and growth mechanism of carbon nanotubes (CNTs) has been affected by the catalytic activity of transition metals. The catalyst behavior during growth has been mainly associated as the responsible mechanism for the termination of CNT growth. Although several hypotheses have been developed to explain this mechanism, is still today an unresolved phenomenon. It was recently shown that the Ostwald ripening of iron (Fe) nanoparticles played a dominant role in the termination of CNT growth. The Ostwald ripening mechanism was further investigated as a function of thermal annealing in Hydrogen (H2) for …


Evanescent Microwave Characterization Of Carbon Nanotube Films Grown On Silicon Carbide Substrate, Kineshma Munbodh Jan 2007

Evanescent Microwave Characterization Of Carbon Nanotube Films Grown On Silicon Carbide Substrate, Kineshma Munbodh

Browse all Theses and Dissertations

The electromagnetic characterization of carbon nanotube films (CNT) grown by the surface decomposition of silicon carbide (SiC) has been performed. The CNT films formed on the carbon and silicon terminated face of the SiC substrate were uncapped by an annealing process at a temperature of 4000 C with dwelling time up to 60 minutes in oxygen or carbon dioxide atmosphere. X-Y scans of the quality factor were used to deduce the local conductive properties of the films measured by evanescent microwave microscopy. Real and imaginary permittivity values, as determined by these electromagnetic measurements, provided valuable information for future field emission …