Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Dft Investigations Of Hydrogen Storage Materials, Gang Wang Jan 2016

Dft Investigations Of Hydrogen Storage Materials, Gang Wang

Doctoral Dissertations

"Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation.

Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of …


Electron Mean-Free Paths In The Alkali Metals, G. K. Wertheim, D. Mark Riffe, N. V. Smith, P. H. Citrin Jul 1992

Electron Mean-Free Paths In The Alkali Metals, G. K. Wertheim, D. Mark Riffe, N. V. Smith, P. H. Citrin

All Physics Faculty Publications

Photoemission data in which the signal from the first atomic layer is well resolved from that of the bulk are used to determine accurately the kinetic-energy dependence of the inelastic-electron mean free path in the alkali metals. At the higher kinetic energies, the data are in very good agreement with the theory of Penn. Below about 10 eV, the mean free path in the heavier alkali metals drops markedly below the theoretical values. This is attributed to electron decay processes involving the unoccupied d bands.


Bulk And Surface Singularity Indices In The Alkali Metals, G. K. Wertheim, D. Mark Riffe, P. H. Citrin Apr 1992

Bulk And Surface Singularity Indices In The Alkali Metals, G. K. Wertheim, D. Mark Riffe, P. H. Citrin

All Physics Faculty Publications

Photoemission data from (110) films of Li, Na, and Rb, in which the signal from the first atomic layer is well resolved, show that the core-hole-screening singularity index is ∼40% larger at the surface than in the bulk for all three metals. This result, which is indicative of the more atomiclike character of metal surface atoms, in general, is particularly large for the alkali metals because their conduction-electron screening is mainly s-like. In addition to quantifying the difference in screening at the surface, the data provide bulk singularity indices of 0.22, 0.16, and 0.14 for Li, Na, and Rb, respectively. …