Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2D materials

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 24 of 24

Full-Text Articles in Physics

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg May 2024

Encapsulated 2d Materials And The Potential For 1d Electrical Contacts, Sarah Wittenburg

Physics Undergraduate Honors Theses

The utilization of two-dimensional materials and heterostructures, particularly graphene and hexagonal boron nitride, have garnered significant attention in the realm of nanoelectronics due to their unique properties and versatile functionalities. This study focuses on the synthesis and fabrication processes of monolayer graphene encapsulated between layers of hBN, aiming to explore the potential of these heterostructures for various electronic applications. The encapsulation of graphene within hBN layers not only enhances device performance but also shields graphene from environmental contaminants, ensuring long-term stability. Experimental techniques, including mechanical exfoliation and stamp-assisted transfer, are employed to construct three-layer stacks comprising hBN-graphene-hBN. The fabrication process …


Source Data For "Flowering Of Developable 2d Crystal Shapes In Closed, Fluid Membranes", Hao Wan, Geunwoong Jeon, Weiyue Xin, Gregory M. Grason, Maria M. Santore Jan 2024

Source Data For "Flowering Of Developable 2d Crystal Shapes In Closed, Fluid Membranes", Hao Wan, Geunwoong Jeon, Weiyue Xin, Gregory M. Grason, Maria M. Santore

Data and Datasets

Source data for "Flowering of Developable 2D Crystal Shapes in Closed, Fluid Membranes".


Thermal Conductivity And Mechanical Properties Of Interlayer-Bonded Graphene Bilayers, Afnan Mostafa Nov 2023

Thermal Conductivity And Mechanical Properties Of Interlayer-Bonded Graphene Bilayers, Afnan Mostafa

Masters Theses

Graphene, an allotrope of carbon, has demonstrated exceptional mechanical, thermal, electronic, and optical properties. Complementary to such innate properties, structural modification through chemical functionalization or defect engineering can significantly enhance the properties and functionality of graphene and its derivatives. Hence, understanding structure-property relationships in graphene-based metamaterials has garnered much attention in recent years. In this thesis, we present molecular dynamics studies aimed at elucidating structure-property relationships that govern the thermomechanical response of interlayer-bonded graphene bilayers.

First, we present a systematic and thorough analysis of thermal transport in interlayer-bonded twisted bilayer graphene (IB-TBG). We find that the introduction of interlayer C-C …


Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh Sep 2023

Nonlinear Processes In Room Temperature Exciton-Polaritons, Prathmesh Deshmukh

Dissertations, Theses, and Capstone Projects

Strong light-matter coupling in solid state systems is an intriguing process that allows one to exploit the advantages of both light and matter. In this context, microcavities have become essential platforms for studying the strong coupling regime, where hybrid light-matter states known as exciton-polaritons form, leading to enhanced light matter interaction, modified material properties, and novel quantum phenomena. In this thesis, we explore the phenomenology of exciton-polaritons in strained TMD microcavities, 2D perovskites, fluorescent proteins and organic dyes encompassing thermalization, polariton lasing, and the observation of nonlinear effects.

Transition metal dichalcogenides (TMDs) have emerged as a remarkable class of two- …


Characterization Of 2d Quantum Materials Using Ai And Large-Scale Quantum Data Collection, Apoorva Bisht May 2023

Characterization Of 2d Quantum Materials Using Ai And Large-Scale Quantum Data Collection, Apoorva Bisht

Computer Science and Computer Engineering Undergraduate Honors Theses

2D materials like hexagonal boron nitride, graphene, and tungsten diselenide are widely utilized for studying their unique mechanical and opto-electronic properties to exploit them to make transistors and fabricating a variety of other devices. All these applications require that the 2D materials used be of specific uniform thickness. Until very recently, this process has been largely manual and tedious. However, few applications exploit the characteristic color-to-thickness correspondence of these near-transparent materials. To continue this effort, in this work we create a large-scale dataset for three different materials (hBN, graphene, and WSe$_2$) to train and test an image segmentation model along …


Ab-Initio Investigation Of 2d Materials For Gas Sensing, Energy Storage And Spintronic Applications, Saba Khan Apr 2023

Ab-Initio Investigation Of 2d Materials For Gas Sensing, Energy Storage And Spintronic Applications, Saba Khan

Dissertations

The field of Two Dimensional (2D) materials has been extensively studied since their discovery in 2004, owing to their remarkable combination of properties. My thesis focuses on exploring novel 2D materials such as Graphene Nanoribbon (GNR), holey carbon nitride C2N, and MXenes for energy storage, gas sensing, and spintronic applications, utilizing state-of-the-art techniques that combine Density Functional Theory (DFT) and Non-Equilibrium Greens Functions (NEGF) formalism; namely Vienna Ab-initio Simulation Package (VASP) and Atomistic Toolkit (ATK) package.
Firstly, on the side of gas sensing, the burning of fossil fuels raises the level of toxic gas and contributes to global …


Pyseg: A Python Package For 2d Material Flake Localization, Segmentation, And Thickness Prediction, Diana B. Horangic Dec 2022

Pyseg: A Python Package For 2d Material Flake Localization, Segmentation, And Thickness Prediction, Diana B. Horangic

Student Research Projects

Thin materials are of interest for their extraordinary physical, mechanical, thermal, electrical, and optical properties. Monolayers and bilayers of 2D materials can be manufactured through a variety of exfoliation methods. To determine layer thickness, Raman spectroscopy or other methods like Rayleigh scattering are used. These methods are, however, slow, and they require equipment beyond an optical microscope. A Python package that automates flake identification processes was built, with access solely to RGB data from an optical microscope assumed. My package, pyseg, localizes flakes on a substrate and then makes a rough estimate of their thickness from first principles. It can …


Structural, Vibrational And Transport Properties Of Novel Complex Systems., Bhupendra Man Shing Karki Aug 2021

Structural, Vibrational And Transport Properties Of Novel Complex Systems., Bhupendra Man Shing Karki

Electronic Theses and Dissertations

Electron correlation effects in quantum materials are very strong. It is critical to investigate the structure of quantum materials to better understand and manipulate their physical properties. Quantum effects are prominent at the atomic microscopic length scale, which can not be examined by average long range structural measurements using traditional diffraction methods. Instead, pair distribution function (PDF) analysis, a local structure probe, can effectively unveil the mystery of local structure, which is more sensitive to local behavior than bulk average features. The first section of my dissertation will concentrate on the local structural study of the Iron oxy-chalcogenides, {\cSSe}, which …


Sputtered 2d Transition Metal Dichalcogenides: From Growth To Deviceapplications, Merve Acar, Emre Gür Jan 2021

Sputtered 2d Transition Metal Dichalcogenides: From Growth To Deviceapplications, Merve Acar, Emre Gür

Turkish Journal of Physics

Starting from graphene, 2D layered materials family has been recently set up more than 100 different materials with variety of different class of materials such as semiconductors, metals, semimetals, superconductors. Among these materials, 2D semiconductors have found especial importance in the state of the art device applications compared to that of the current conventional devices such as (which material based for example Si based) field effect transistors (FETs) and photodetectors during the last two decades. This high potential in solid state devices is mostly revealed by the transition metal dichalcogenides (TMDCs) semiconductor materials such as MoS${}_{2}$, WS${}_{2}$, MoSe${}_{2}$ and WSe${}_{2}$. …


A Structural Study Of Correlated Materials: Incipient Mott Insulators And Low-Dimensional Systesm., Alaa Alfailakawi Aug 2020

A Structural Study Of Correlated Materials: Incipient Mott Insulators And Low-Dimensional Systesm., Alaa Alfailakawi

Electronic Theses and Dissertations

Current theories of high-temperature superconductivity suggest that electrons must organize into Cooper pairs in order for a material to exhibit a superconducting phase. Electrons in insulators experience significant repulsive interactions that tend to keep electrons localized at atomic positions. In contrast, electrons in metals are delocalized, interact weakly, and are free to conduct electricity. Therefore, the formation of Cooper pairs should have different mechanisms for metals compared to insulators. This contrast raises the debate about the origin of high-temperature superconductivity in iron-based material, whether it depends on the strong or weak coupling. Many iron-based materials are metallic in the normal …


Heterostructure Of 2d Materials: Hfs2/Hfo2/Si, Christopher J. Robledo Aug 2020

Heterostructure Of 2d Materials: Hfs2/Hfo2/Si, Christopher J. Robledo

MSU Graduate Theses

Heterostructures have been utilized in electronic devices for over 50 years with the proposal for the first heterostructure transistor in 1957. With the scaling of devices, it is necessary to create new heterostructures that will comply with Moore’s Law, as well as make devices faster and consume less power. Novel 2D materials, such as hafnium disulfide, have shown promise as an active channel layer, while hafnium dioxide is already proven to be a replacement of silicon dioxide for the gate insulating layer. However, fabrication techniques for wide-scale integration of these heterostructures have not yet been achieved. Also, the dielectric properties …


Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong Aug 2019

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong

Department of Chemistry: Dissertations, Theses, and Student Research

During the last 30 years, microelectronic devices have been continuously designed and developed with smaller size and yet more functionalities. Today, hundreds of millions of transistors and complementary metal-oxide-semiconductor cells can be designed and integrated on a single microchip through 3D packaging and chip stacking technology. A large amount of heat will be generated in a limited space during the operation of microchips. Moreover, there is a high possibility of hot spots due to non-uniform integrated circuit design patterns as some core parts of a microchip work harder than other memory parts. This issue becomes acute as stacked microchips get …


First-Principles Study Of Structural And Optical Properties Of Novel Materials, Wenshen Song May 2019

First-Principles Study Of Structural And Optical Properties Of Novel Materials, Wenshen Song

Arts & Sciences Electronic Theses and Dissertations

Novel materials, including two-dimensional (2D) materials, ferroelectric materials, as well as hybrid perovskites materials, have attracted tremendous attention in recent years because of their unique structural symmetries and electronic structures. Among them, 2D materials, such as graphene, black phosphorene, and transition metal dichalcogenides (TMDs), etc., have great potentials for nanoelectronics and optical applications. Particularly, these 2D materials can sustain much larger strain than their bulk counterparts, making strain a unique and efficient tool to tune a wide range of properties of 2D structures. In the first part of this thesis, we explore how strain tunes quasiparticle energy and excitonic effects …


Two-Dimensional Ti2c Monolayer (Mxene): Surface Functionalization, Inducedmetal, Semiconductor Transition, Berna Akgenc Jan 2019

Two-Dimensional Ti2c Monolayer (Mxene): Surface Functionalization, Inducedmetal, Semiconductor Transition, Berna Akgenc

Turkish Journal of Physics

Recently, two-dimensional (2D) transition metal carbides and nitrides known as MXenes, have gained a lot of attention because of their tunable electronic and magnetic properties depending on surface functionalization. In the present work, the structural, electronic, and magnetic properties of both T and H phases of bare Ti2C and fully surface terminated Ti2 CT2 (T = -F, = O, -OH) are calculated using a set of first principles calculations. The ground state structures of Ti2 CT2 are computed in two and four different configurations for both H and T phases, respectively. We demonstrate that while H phase of Ti2C exhibits …


Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse Jan 2019

Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse

Legacy Theses & Dissertations (2009 - 2024)

This dissertation presents theoretical and experimental studies in carbon nanotubes (CNTs), graphene, and van der Waals heterostructures. The first half of the dissertation focuses on cutting edge tight-binding-based quantum transport models which are used to study proton irradiation-induced single-event effects in carbon nanotubes [1], total ionizing dose effects in graphene [2], quantum hall effect in graded graphene p-n junctions [3], and ballistic electron focusing in graphene p-n junctions [4]. In each study, tight-binding models are developed, with heavy emphasis on tying to experimental data. Once benchmarked against experiment, properties of each system which are difficult to access in the laboratory, …


Computational Prediction, Characterization, And Methodology Development For Two-Dimensional Nanostructures: Phosphorene And Phosphide Binary Compounds., Congyan Zhang Dec 2018

Computational Prediction, Characterization, And Methodology Development For Two-Dimensional Nanostructures: Phosphorene And Phosphide Binary Compounds., Congyan Zhang

Electronic Theses and Dissertations

In this thesis, a comprehensive computational simulation was carried out for predicting, characterizing, and applications of two-dimensional (2D) materials. The newly discovered GaP and InP layers were selected as an example to demonstrate how to explore new 2D materials using computational simulations. The performance of phosphorene as the anode material of Lithium-ion battery was discussed as the example of the application of 2D material. Furthermore, the semi-empirical Hamiltonian for phosphorous and lithium elements have been developed for our future work on the application of phosphorus and lithium-based systems. The novel 2D materials of GaP and InP binary compounds were found …


Graphene Used As A Lateral Force Microscopy Calibration Material In The Low-Load Non-Linear Regime, Mathias J. Boland, Jacob L. Hempel, Armin Ansary, Mohsen Nasseri, Douglas R. Strachan Nov 2018

Graphene Used As A Lateral Force Microscopy Calibration Material In The Low-Load Non-Linear Regime, Mathias J. Boland, Jacob L. Hempel, Armin Ansary, Mohsen Nasseri, Douglas R. Strachan

Physics and Astronomy Faculty Publications

A lateral force microscopy (LFM) calibration technique utilizing a random low-profile surface is proposed that is successfully employed in the low-load non-linear frictional regime using a single layer of graphene on a supporting oxide substrate. This calibration at low loads and on low friction surfaces like graphene has the benefit of helping to limit the wear of the LFM tip during the calibration procedure. Moreover, the low-profiles of the calibration surface characteristic of these layered 2D materials, on standard polished oxide substrates, result in a nearly constant frictional, adhesive, and elastic response as the tip slides over the surface, making …


Chemical Vapor Transport Synthesis Of A Selenium-Based Two-Dimensional Material, Tali̇p Serkan Kasirga Jan 2018

Chemical Vapor Transport Synthesis Of A Selenium-Based Two-Dimensional Material, Tali̇p Serkan Kasirga

Turkish Journal of Physics

Selenium-based layered materials, and in particular transition-metal diselenides (TMDSs), have intriguing properties in the monolayer limit. Materials such as MoSe$_{2}$, WSe$_{2}$, and NbSe$_{2}$ display striking features such as spin-valley coupling at the valence-band edges and offer great potential for optoelectronics applications. Although a dozen of other TMDSs have been realized or proposed, whether two-dimensional chalcogens are possible or not is still an open challenge. In this work, we show the chemical vapor transport synthesis of a novel, atomically thin selenium-based material on oxidized silicon substrates. This new member of the two-dimensional materials family has a unique Raman spectrum similar to …


Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio May 2017

Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio

Graduate Theses and Dissertations

Conversion of infrared energy within plasmonic fields at two-dimensional, semiconductive transition metal dichalcogenides (TMD) through plasmonic hot electron transport and nonlinear frequency mixing has important implications in next-generation optoelectronics. Drude-Lorentz theory and approximate discrete dipole (DDA) solutions to Maxwell’s equations guided metal nanoantenna design towards strong infrared localized surface plasmon resonance (LSPR). Excitation and damping dynamics of LSPR in heterostructures of noble metal nanoantennas and molybdenum- or tungsten-disulfide (MoS2; WS2) monolayers were examined by parallel synthesis of (i) DDA electrodynamic simulations and (ii) near-field electron energy loss (EELS) and far-field optical transmission UV-vis spectroscopic measurements. Susceptibility to second-order nonlinear frequency …


Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin Jan 2017

Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin

Graduate Theses and Dissertations

Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was …


Low-Dimensional Materials For Organic Electronic Applications, Sumit Beniwal Aug 2016

Low-Dimensional Materials For Organic Electronic Applications, Sumit Beniwal

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

This thesis explores the self-assembly, surface interactions and electronic properties of functional molecules that have potential applications in electronics. Three classes of molecules - organic ferroelectric, spin-crossover complex, and molecules that assemble into a 2D semiconductor, have been studied through scanning tunneling microscopy and surfacesensitive spectroscopic methods. The scientific goal of this thesis is to understand the self-assembly of these molecules in low-dimensional (2D) configurations and the influence of substrate on their properties. First, a H-bonded organic ferroelectric, the 3-Hydroxyphenalenone, is studied on two noble metal substrates. It is demonstrated how a variety of different assemblies including 1D chains, p-p …


First-Principles Studies Of Group Iv And Group V Related Two Dimensional Materials, Gaoxue Wang Jan 2016

First-Principles Studies Of Group Iv And Group V Related Two Dimensional Materials, Gaoxue Wang

Dissertations, Master's Theses and Master's Reports

Two dimensional (2D) materials have been extensively studied due to their novel properties and technologically important applications. Especially, the discovery of graphene has stimulated an avalanche of investigations to exploit its novel properties for applications at nanoscale. In the post-silicon era, graphene has been widely regarded as the most promising building blocks for the electronic devices. However, its metallic nature together with sensitivity to the environment leads to somewhat limited scope of applications. A finite band gap in a material is known to be essential for the fabrication of devices such as transistors. Such a limitation associated with graphene has …


Atom-Based Geometrical Fingerprinting Of Conformal Two-Dimensional Materials, Mehrshad Mehboudi Dec 2014

Atom-Based Geometrical Fingerprinting Of Conformal Two-Dimensional Materials, Mehrshad Mehboudi

Graduate Theses and Dissertations

The shape of two-dimensional materials plays a significant role on their chemical and physical properties. Two-dimensional materials are basic meshes that are formed by mesh points (vertices) given by atomic positions, and connecting lines (edges) between points given by chemical bonds. Therefore the study of local shape and geometry of two-dimensional materials is a fundamental prerequisite to investigate physical and chemical properties. Hereby the use of discrete geometry to discuss the shape of two-dimensional materials is initiated.

The local geometry of a surface embodied in 3D space is determined using four invariant numbers from the metric and curvature tensors which …


Electronic And Magnetic Excitations In Graphene And Magnetic Nano-Ribbons, Maher Zakaria Ahmed Selim Sep 2011

Electronic And Magnetic Excitations In Graphene And Magnetic Nano-Ribbons, Maher Zakaria Ahmed Selim

Electronic Thesis and Dissertation Repository

The discovery of graphene - a 2D material with superior physical properties - in 2004 was important for the intensive global research to find alternatives to three-dimensional (3D) semiconductor materials in industry. At the same time there have been exciting advances for 2D magnetic materials on the nanometer scale. The superior properties of graphene are mainly attributed to its crystal structure and its relatively short-range interactions. These properties show that natural and artificial 2D materials are promising for new applications.

In this thesis we have carried out a comprehensive investigation of the effects of the 2D lattice structures, the roles …