Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

Detecting Majorana Fermion Induced Crossed Andreev Reflection, Lei Fang Sep 2017

Detecting Majorana Fermion Induced Crossed Andreev Reflection, Lei Fang

Dissertations, Theses, and Capstone Projects

This dissertation is devoted to a study of detecting the Majorana fermion induced crossed Andreev reflection.

Majorana fermions are particles that constitute their own antiparticles. In condensed matter physics, Majorana fermions are zero energy modes that reside at edges or around vortices of topological superconductors. The special properties of Majorana fermions result in their potential to conduct topological quantum computation, which has been attracting a lot of current research. One of the most important issues in the field of the Majorana fermion physics now is to detect their existence in realistic systems. Among many classes of detecting methods, a transport …


Continuum Electrostatics Analysis Of The Kok Cycle Of Photosystem Ii, Witold Szejgis Sep 2017

Continuum Electrostatics Analysis Of The Kok Cycle Of Photosystem Ii, Witold Szejgis

Dissertations, Theses, and Capstone Projects

The Kok cycle is catalytic process by which the oxygen-evolving complex (OEC) of photosystem II (PSII) oxidizes two water molecules forming oxygen. Four OEC oxidation states (S0 to S3) in the Kok cycle precede the final product formation in the S4 state. Here a semi-empirical classical electrostatics analysis is applied to S0 to S3 states of the OEC is used to estimate the electrochemical midpoints for each S-state transition and the proton loss coupled to oxidation. To account for geometrical rearrangement within the cluster during Kok cycle optimized QM/MM geometries are used for each …


Nonlinear Optical Studies Of Defects And Domain Structures In Perovskite-Type Dielectric Ceramics, David J. Ascienzo Sep 2017

Nonlinear Optical Studies Of Defects And Domain Structures In Perovskite-Type Dielectric Ceramics, David J. Ascienzo

Dissertations, Theses, and Capstone Projects

In order to improve future generations of dielectric capacitors a deeper understanding of voltage-induced dielectric breakdown and electrical energy storage limitations is required. This dissertation presents the use of far-field optical second harmonic generation (SHG) polarimetry for probing structural defects and polar domains in linear and nonlinear perovskite dielectric ceramics. We investigated the formation of electric field-induced structural distortions at pristine Fe-doped SrTiO3 (Fe:STO) electrode interfaces, structural defect and strain formation due to oxygen vacancy migration in electrodegraded Fe:STO single crystals, and mixed tetragonal and rhombohedral phase domains in ferroelectric Zr-doped BaTiO3 (BZT) films exhibiting excellent …


Characterization Of Hydrophobic Interactions Of Polymers With Water And Phospholipid Membranes Using Molecular Dynamics Simulations, Mihaela Drenscko Sep 2017

Characterization Of Hydrophobic Interactions Of Polymers With Water And Phospholipid Membranes Using Molecular Dynamics Simulations, Mihaela Drenscko

Dissertations, Theses, and Capstone Projects

Polymers and lipid membranes are both essential soft materials. The structure and hydrophobicity/hydrophilicity of polymers, as well as the solvent they are embedded in, ultimately determines their size and shape. Understating the variation of shape of the polymer as well as its interactions with model biological membranes can assist in understanding the biocompatibility of the polymer itself. Computer simulations, in particular molecular dynamics, can aid in characterization of the interaction of polymers with solvent, as well as polymers with model membranes. In this thesis, molecular dynamics serve to describe polymer interactions with a solvent (water) and with a lipid membrane. …


Control Of Light-Matter Interaction In 2d Semiconductors, Zheng Sun Sep 2017

Control Of Light-Matter Interaction In 2d Semiconductors, Zheng Sun

Dissertations, Theses, and Capstone Projects

In this thesis we discuss the control of light matter interaction in low dimensional nanostructure cavity light confining structures. These structures have controllable dispersion properties through design which can be exploited to modify the interaction of light and matter. We will discuss two different types of light confining microcavities: a dielectric cavity and a metal cavity. The specific design of the cavity gives rise to the confinement of the electric field in the center where the nano-materials are placed. In this work, the main material was on the new class of two- dimensional semiconductors of transition metal dichalcogenides (TMDs). Due …


A Realization Of Modernity: Case Studies In Connectivity And Time, Mari Gorman Sep 2017

A Realization Of Modernity: Case Studies In Connectivity And Time, Mari Gorman

Dissertations, Theses, and Capstone Projects

My stated goal in applying to The Graduate Center was to explore my previous research in diverse fields of study. This research, the result of a formal investigation of acting, was and still is centrally focused on the subject of relationship itself, relationships being what actors create. In pursuit of a greater understanding of the essential nature of relationship in practical terms, a self-organizing complex system that constitutes universal relationship was unexpectedly discovered. As such, this system has been shown to offer solutions to many outstanding problems in diverse areas of study. The Liberal Studies program track, Approaches to Modernity …


Nuclear Magnetic Resonance Studies Of Electrode And Electrolyte Materials For Li-Ion Batteries, Lisa Cirrincione Sep 2017

Nuclear Magnetic Resonance Studies Of Electrode And Electrolyte Materials For Li-Ion Batteries, Lisa Cirrincione

Dissertations, Theses, and Capstone Projects

In this thesis, Nuclear Magnetic Resonance (NMR) spectroscopic techniques are used to study lithium electrode and electrolyte materials for advanced rechargeable lithium ion batteries. Three projects are described in this thesis. The first involves 23Na and 37Al static and magic angle spinning NMR studies of NaAlH4/C anode materials for advanced rechargeable batteries. The second project is a study of paramagnetic lithium transition-metal phosphate cathode materials for Li-ion batteries, where 7Li, and 31P single crystal NMR was used in order to obtain detailed information on the local electronic and magnetic environments. The third project investigates …


Quantum Optical Interferometry And Quantum State Engineering, Richard J. Birrittella Jr Jun 2017

Quantum Optical Interferometry And Quantum State Engineering, Richard J. Birrittella Jr

Dissertations, Theses, and Capstone Projects

We highlight some of our research done in the fields of quantum optical interferometry and quantum state engineering. We discuss the body of work for which our research is predicated, as well as discuss some of the fundamental tenants of the theory of phase estimation. We do this in the context of quantum optical interferometry where our primary interest lies in the calculation of the quantum Fisher information as it has been shown that the minimum phase uncertainty obtained, the quantum Cramer-Rao bound, is saturated by parity-based detection methods. We go on to show that the phase uncertainty one obtains …


Wave Propagation Inside Random Media, Xiaojun Cheng Jun 2017

Wave Propagation Inside Random Media, Xiaojun Cheng

Dissertations, Theses, and Capstone Projects

This thesis presents results of studies of wave scattering within and transmission through random and periodic systems. The main focus is on energy profiles inside quasi-1D and 1D random media.

The connection between transport and the states of the medium is manifested in the equivalence of the dimensionless conductance, g, and the Thouless number which is the ratio of the average linewidth and spacing of energy levels. This equivalence and theories regarding the energy profiles inside random media are based on the assumption that LDOS is uniform throughout the samples. We have conducted microwave measurements of the longitudinal energy profiles …


The Effects Of Tilted Magnetic Fields On Quantum Transport In 2d Electron Systems, William A. Mayer Feb 2017

The Effects Of Tilted Magnetic Fields On Quantum Transport In 2d Electron Systems, William A. Mayer

Dissertations, Theses, and Capstone Projects

There exists a myriad of quantum transport phenomena in highly mobile 2D electrons placed in a perpendicular magnetic field. We study the effects of tilted magnetic field on these transport properties to understand how the energy spectrum evolves. We observe significant changes of the electron transport in quantum wells of varying widths with high electron densities at high filling factors. In narrow quantum wells the spin splitting of Landau levels due to Zeeman effect is found to be the dominant mechanism reducing Quantum Positive Magnetoresistance. In wider quantum wells with two populated subbands Magnetointersubband oscillations appear to exhibit effects from …


Second Harmonic Generation – A Novel Approach In Retinal Imaging, Denis Y. Sharoukhov Feb 2017

Second Harmonic Generation – A Novel Approach In Retinal Imaging, Denis Y. Sharoukhov

Dissertations, Theses, and Capstone Projects

Here we present the utilization of Second Harmonic Generation (SHG) for label-free imaging of microtubules (MTs) in the retinal nerve fiber layer (RNFL). MTs are an important part of axonal cytoskeleton, providing structural support and serving as a railroad in intracellular transport. We demonstrate the application of SHG microscopy to the following studies: 1) Can changes in MT conformation be detected when treated with a stabilizing drug (Taxol); 2) if disruption in MT precedes loss of axons in a mouse model of glaucoma (DBA/2J); and 3) if elevated levels of intraocular pressure affect MT integrity. Our results validate SHG imaging …


Optical Forces Generated By Plasmonic Nanostructures, Matthew A. Moocarme Feb 2017

Optical Forces Generated By Plasmonic Nanostructures, Matthew A. Moocarme

Dissertations, Theses, and Capstone Projects

For millennia, scientists have sought to uncover the secrets of what holds the world together. Optical physicists are often at the forefront, unraveling material properties through investigations of light-matter interactions. As the field has progressed, the smallest unit at which matter can be probed and manipulated has subsequently decreased. The resulting sub-field nanophotonics- which reflects the processing of light at the nanoscale- has blossomed into a vast design space for both applied and theoretical researchers. Plasmonics, the phenomena by which the electron-density of a material oscillates in response to incident electromagnetic radiation, is a subject that has excited nanophotonics researchers …