Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2017

Biological and Chemical Physics

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 52

Full-Text Articles in Physics

An Application Of M-Matrices To Preserve Bounded Positive Solutions To The Evolution Equations Of Biofilm Models, Richard S. Landry Jr. Dec 2017

An Application Of M-Matrices To Preserve Bounded Positive Solutions To The Evolution Equations Of Biofilm Models, Richard S. Landry Jr.

University of New Orleans Theses and Dissertations

In this work, we design a linear, two step implicit finite difference method to approximate the solutions of a biological system that describes the interaction between a microbial colony and a surrounding substrate. Three separate models are analyzed, all of which can be described as systems of partial differential equations (PDE)s with nonlinear diffusion and reaction, where the biological colony grows and decays based on the substrate bioavailability. The systems under investigation are all complex models describing the dynamics of biological films. In view of the difficulties to calculate analytical solutions of the models, we design here a numerical technique …


Untangling The Mechanics Of Co-Entangled Cytoskeletal Networks, Shea Ricketts Dec 2017

Untangling The Mechanics Of Co-Entangled Cytoskeletal Networks, Shea Ricketts

Undergraduate Honors Theses

Active networks of interlinked protein filaments comprising the cytoskeleton largely control cellular mechanics and cell architecture. By forming cytoskeleton networks that combine motile, semiflexible actin with rigid, supportive microtubules, cells maintain structural integrity and shape while being able to flow and move. To elucidate the complex mechanical processes that arise between interacting networks of actin and microtubules within cells, we create a suite of randomly-oriented, well mixed networks of actin and microtubules by co-polymerizing varying ratios of both proteins in situ. We use optical tweezer microrheology in order to characterize the nonlinear mesoscale mechanics of in vitro co-entangled actin-microtubule composites. …


Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha Dec 2017

Transport Of Water And Ions Through Single-Walled Armchair Carbon Nanotubes: A Molecular Dynamics Study, Michelle Patricia Aranha

Doctoral Dissertations

The narrow hydrophobic interior of a carbon nanotube (CNT) poses a barrier to the transport of water and ions, and yet, unexpectedly, numerous experimental and simulation studies have confirmed fast water transport rates comparable to those seen in biological aquaporin channels. These outstanding features of high water permeability and high solute rejection of even dissolved ions that would typically require a lot of energy for separation in commercial processes makes carbon nanotubes an exciting candidate for desalination membranes. Extending ion exclusion beyond simple mechanical sieving by the inclusion of electrostatics via added functionality to the nanotube bears promise to not …


Folding Of Bovine Pancreatic Trypsin Inhibitor (Bpti) Is Faster Using Aromatic Thiols And Their Corresponding Disulfides, Ram Prasad Marahatta Nov 2017

Folding Of Bovine Pancreatic Trypsin Inhibitor (Bpti) Is Faster Using Aromatic Thiols And Their Corresponding Disulfides, Ram Prasad Marahatta

FIU Electronic Theses and Dissertations

Improvement in the in vitro oxidative folding of disulfide-containing proteins, such as extracellular and pharmaceutically important proteins, is required. Traditional folding methods using small molecule aliphatic thiol and disulfide, such as glutathione (GSH) and glutathione disulfide (GSSG) are slow and low yielding. Small molecule aromatic thiols and disulfides show great potentiality because aromatic thiols have low pKa values, close to the thiol pKa of protein disulfide isomerase (PDI), higher nucleophilicity and good leaving group ability. Our studies showed that thiols with a positively charged group, quaternary ammonium salts (QAS), are better than thiols with negatively charged groups such as phosphonic …


Mixing Times Of Organic Molecules Within Secondary Organic Aerosol Particles: A Global Planetary Boundary Layer Perspective, Adrian M. Maclean, Christopher L. Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Allan K. Bertram Nov 2017

Mixing Times Of Organic Molecules Within Secondary Organic Aerosol Particles: A Global Planetary Boundary Layer Perspective, Adrian M. Maclean, Christopher L. Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Allan K. Bertram

Physics Faculty Publications and Presentations

When simulating the formation and life cycle of secondary organic aerosol (SOA) with chemical transport models, it is often assumed that organic molecules are well mixed within SOA particles on the timescale of 1 h. While this assumption has been debated vigorously in the literature, the issue remains unresolved in part due to a lack of information on the mixing times within SOA particles as a function of both temperature and relative humidity. Using laboratory data, meteorological fields, and a chemical transport model, we estimated how often mixing times are < 1 h within SOA in the planetary boundary layer (PBL), the region of the atmosphere where SOA concentrations are on average the highest. First, a parameterization for viscosity as a function of temperature and RH was developed for α-pinene SOA using room-temperature and low-temperature viscosity data for α-pinene SOA generated in the laboratory using mass concentrations of ∼ 1000 µg m−3. Based on this parameterization, the mixing times within α-pinene SOA are < 1 h for 98.5 % and 99.9 % of the occurrences in the PBL during January and July, respectively, when concentrations are significant (total organic aerosol concentrations are > 0.5 µg m−3 at the surface). Next, as a starting …


Investigation Of Iron Oxide Nanocolloidal Suspension Diffusion Using A Direct Imaging Method, Ashley E. Rice, Ana Oprisan Nov 2017

Investigation Of Iron Oxide Nanocolloidal Suspension Diffusion Using A Direct Imaging Method, Ashley E. Rice, Ana Oprisan

Journal of the South Carolina Academy of Science

We performed a set of experiments using a direct imaging method to investigate the diffusion process of iron oxide, Fe2O3, nanoparticles. We studied concentration fluctuations that move against the concentration gradient and induce disturbances in the interface between the iron oxide suspension and water in the sample cell. Using this imaging method in combination with the differential dynamic algorithm for image processing, we are able to extract information about the power, size, and lifetime of the fluctuations. We performed this experiment both in the presence and in the absence of a 4.2 mT magnetic field. We …


Assembly Of Particles Onto Rigid Cylinders And Flexible Membranes: Probing Effects Of Surface Curvature And Deformation, Derek Wood Nov 2017

Assembly Of Particles Onto Rigid Cylinders And Flexible Membranes: Probing Effects Of Surface Curvature And Deformation, Derek Wood

Doctoral Dissertations

In this thesis we explore two specific topics within the broad field of particle adhesion. First, we examine the effect of substrate shape and geometry on the self assembly of adsorbed particles, by performing molecular dynamics simulations of interacting particles constrained to the surface of cylinders of varying diameters. We find the diameter of the cylinder imposes a constraint on the shape and crystallographic orientation of the self-assembled lattice, essentially determining the optimal arrangement of particles a priori. We propose a simple one-dimensional model to explain the optimal arrangement of particles as a function of the particle interaction potential …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Conducting Polyelectrolyte Complexes: Assembly, Structure, And Transport, Michael A. Leaf Nov 2017

Conducting Polyelectrolyte Complexes: Assembly, Structure, And Transport, Michael A. Leaf

Doctoral Dissertations

Decades of progress have yielded a tremendous variety of organic electronics, with great strides in the development of photovoltaics, thermoelectrics and other flexible devices. Ubiquitous in these research areas are films of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT: PSS), a complex of oppositely-charged polyelectrolytes initially suspended in water before film formation. This material has high electronic conductivity and good water processability. Pristine film conductivity is somewhat low, but is dramatically enhanced through simple treatments like ionic liquid addition or shear. Can this enhancement be understood so that further optimization might render PEDOT: PSS commercially viable? PEDOT: PSS is a complicated material, with …


Thermodynamics Of An Evolving Gene Sequence, Brian Clark Oct 2017

Thermodynamics Of An Evolving Gene Sequence, Brian Clark

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


The Behavior Response Of Antlion Larvae To Alternating Magnetic Fields, Lindsey Wagner, Caleb L. Adams Oct 2017

The Behavior Response Of Antlion Larvae To Alternating Magnetic Fields, Lindsey Wagner, Caleb L. Adams

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


A Critical Firing Rate In Synchronous Transitions Of Coupled Neurons, Annabelle Shaffer, Epaminondas Rosa, Rosangela Follmann Oct 2017

A Critical Firing Rate In Synchronous Transitions Of Coupled Neurons, Annabelle Shaffer, Epaminondas Rosa, Rosangela Follmann

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Mathematical Modeling Of Inhibitory Effects On Chemically Coupled Neurons, Nathhaniel Harraman, Epaminondas Rosa Oct 2017

Mathematical Modeling Of Inhibitory Effects On Chemically Coupled Neurons, Nathhaniel Harraman, Epaminondas Rosa

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Temperature Effects On Neuronal Tonic-To-Bursting Transitions, Manuela Burek, Epaminondas Rosa Oct 2017

Temperature Effects On Neuronal Tonic-To-Bursting Transitions, Manuela Burek, Epaminondas Rosa

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


A Brief History Of Neuroscience, Zachary Mobille, Epaminondas Rosa Oct 2017

A Brief History Of Neuroscience, Zachary Mobille, Epaminondas Rosa

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Stochastic Resonance In A Proton Pumping Complex I Of Mitochondria Membranes, Davneet Kaur, Ilan Filonenko, Lev Mourokh, Cornelius Fendler, Robert H. Blick Sep 2017

Stochastic Resonance In A Proton Pumping Complex I Of Mitochondria Membranes, Davneet Kaur, Ilan Filonenko, Lev Mourokh, Cornelius Fendler, Robert H. Blick

Publications and Research

We make use of the physical mechanism of proton pumping in the so-called Complex I within mitochondria membranes. Our model is based on sequential charge transfer assisted by conformational changes which facilitate the indirect electron-proton coupling. The equations of motion for the proton operators are derived and solved numerically in combination with the phenomenological Langevin equation describing the periodic conformational changes. We show that with an appropriate set of parameters, protons can be transferred against an applied voltage. In addition, we demonstrate that only the joint action of the periodic energy modulation and thermal noise leads to efficient uphill proton …


Continuum Electrostatics Analysis Of The Kok Cycle Of Photosystem Ii, Witold Szejgis Sep 2017

Continuum Electrostatics Analysis Of The Kok Cycle Of Photosystem Ii, Witold Szejgis

Dissertations, Theses, and Capstone Projects

The Kok cycle is catalytic process by which the oxygen-evolving complex (OEC) of photosystem II (PSII) oxidizes two water molecules forming oxygen. Four OEC oxidation states (S0 to S3) in the Kok cycle precede the final product formation in the S4 state. Here a semi-empirical classical electrostatics analysis is applied to S0 to S3 states of the OEC is used to estimate the electrochemical midpoints for each S-state transition and the proton loss coupled to oxidation. To account for geometrical rearrangement within the cluster during Kok cycle optimized QM/MM geometries are used for each …


Differential Uptake Of Gold Nanoparticles By 2 Species Of Tadpole, The Wood Frog (Lithobates Sylvaticus) And The Bullfrog (Lithobates Catesbeianus), Lucas B. Thompson, Gerardo L.F. Carfagno, Kurt Andresen, Andrea J. Sitton, Taylor B. Bury, Laura L. Lee, Kevin T. Lerner, Peter P. Fong Aug 2017

Differential Uptake Of Gold Nanoparticles By 2 Species Of Tadpole, The Wood Frog (Lithobates Sylvaticus) And The Bullfrog (Lithobates Catesbeianus), Lucas B. Thompson, Gerardo L.F. Carfagno, Kurt Andresen, Andrea J. Sitton, Taylor B. Bury, Laura L. Lee, Kevin T. Lerner, Peter P. Fong

Biology Faculty Publications

Engineered nanoparticles are aquatic contaminants of emerging concern that exert ecotoxicological effects on a wide variety of organisms. We exposed cetyltrimethylammonium bromide–capped spherical gold nanoparticles to wood frog and bullfrog tadpoles with conspecifics and in combination with the other species continuously for 21 d, then measured uptake and localization of gold. Wood frog tadpoles alone and in combination with bullfrog tadpoles took up significantly more gold than bullfrogs. Bullfrog tadpoles in combination with wood frogs took up significantly more gold than controls. The rank order of weight-normalized gold uptake was wood frogs in combination > wood frogs alone > bullfrogs in combination …


Angular Distribution Of Single-Photon Superradiance In A Dilute And Cold Atomic Ensemble, A. S. Kuraptsev, I. M. Sokolov, M. D. Havey Aug 2017

Angular Distribution Of Single-Photon Superradiance In A Dilute And Cold Atomic Ensemble, A. S. Kuraptsev, I. M. Sokolov, M. D. Havey

Physics Faculty Publications

On the basis of a quantum microscopic approach we study the dynamics of the afterglow of a dilute Gaussian atomic ensemble excited by pulsed radiation. Taking into account the vector nature of the electromagnetic field we analyze in detail the angular and polarization distribution of single-photon superradiance of such an ensemble. The dependence of the angular distribution of superradiance on the length of the pulse and its carrier frequency as well as on the size and the shape of the atomic clouds is studied. We show that there is substantial dependence of the superradiant emission on the polarization and the …


Volumetric, Magnetic Resonance-Visible, And Radiation-Sensitive Detectors For Magnetic Resonance Image-Guided Radiation Therapy, Hannah J. Lee Aug 2017

Volumetric, Magnetic Resonance-Visible, And Radiation-Sensitive Detectors For Magnetic Resonance Image-Guided Radiation Therapy, Hannah J. Lee

Dissertations & Theses (Open Access)

VOLUMETRIC, MAGNETIC RESONANCE-VISIBLE, AND RADIATION-SENSITIVE DETECTORS FOR MAGNETIC RESONANCE IMAGE-GUIDED RADIATION THERAPY

Hannah Jungeun Lee

Advisory Professor: Geoffrey S. Ibbott, Ph.D.

Due to the superior soft-tissue contrast of magnetic resonance imaging (MRI) compared to conventional computed tomography (CT) and other on-board imaging techniques, several groups have integrated MRI and radiation treatment machine systems. The advent of MR image-guided radiation therapy (MR-IGRT) using systems, such as the 1.5 MRI – 7 MV linear accelerator (MR-Linac), now allow for improved soft-tissue on-board imaging for patient position and tumor target localization verification and the ability to assess functional biological tissue characteristics with MRI, …


Ion Size Effects On The Properties Of Charge Regulating Electric Double Layers, Divya Jyoti Prakash Jul 2017

Ion Size Effects On The Properties Of Charge Regulating Electric Double Layers, Divya Jyoti Prakash

Nanoscience and Microsystems ETDs

The behavior of charged interfaces formed in various systems like colloidal solution, fuel cells, battery, electro-deposition, catalysis is governed by the properties of electrical double layer(EDL). Civilized model with charge regulation boundary condition determined by thermodynamic equilibrium at the interface has been used to model electrical double layer and shows that size of the solvent plays a critical role in characterizing the properties of EDL using classical density functional theory.This thesis investigates the impact of ion size in electrolyte solutions on the electrical double layer formed at the interface using a similar model. It is found that ion size greatly …


Functional And Structural Studies Of Cytochromes P450 By Resonance Raman Spectroscopy, Yilin Liu Jul 2017

Functional And Structural Studies Of Cytochromes P450 By Resonance Raman Spectroscopy, Yilin Liu

Dissertations (1934 -)

Cytochrome P450 is a broad class of heme monooxygenase enzymes which catalyze various oxidative transformations. There are two main kinds of mammalian P450s: steroidogenic and drug metabolizing P450s. The first project involves a steroidogenic P450, CYP17A1, occupying a central role in the biosynthesis of steroid hormones. It catalyzes hydroxylation reaction on pregnenolone and progesterone, generating 17OH-pregnenolone and 17OH-progesterone, presumably utilizing a “Compound I” species. However, these hydroxylated products can be further processed in a second oxidative cycle to cleave the C17–C20 bond to form dehydroepiandrosterone or androstenedione, respectively, a crucial step in androgen production. Interestingly, it is well known that …


Basic Vision Research With Clinical Applications And Science Education Assessments, Andrew Wilson Jun 2017

Basic Vision Research With Clinical Applications And Science Education Assessments, Andrew Wilson

Electronic Theses and Dissertations

Visual Acuity (VA) examinations are one of the most commonly conducted medical assessment throughout the world. Recent advances in computer technology allows for new forms of visual assessment to be conducted. In Part I of this thesis I demonstrate the capability of an automated computer program named VISION to assess human visual acuities. Different color combinations of an object against a background emitted from a computer screen are used to examine a variety of human color vision acuities. Results indicated a large difference in acuity scores between human subjects tested with these different color combinations. A single human subject exhibits …


Thin Film Thermal Deposition At Various Pressures, James Kela Yee Keen Grace May 2017

Thin Film Thermal Deposition At Various Pressures, James Kela Yee Keen Grace

Senior Theses

This research was to verify the hypothesis that resistivity of metal's thin film deposited in a low-pressure environment is the same as its solid material. Thermal Evaporation is a thin film deposition technique in which metal inside a vacuum is evaporated, then deposited onto a surface. Higher quality metal films are deposited when the vacuum pressure is lower. At higher pressures, more air molecules are trapped within the layers of metal, thus increasing scattering sites and increasing the resistance. However, reaching a lower pressure requires more time and effort. In this research, films were deposited at various pressures and resistivities …


Optimization Of Cardiac Pacing Stimulation By Current Configuration –A Theoretical, Numerical And Experimental Study., Flavio H. Fenton, Hila Dvir, Neil Hardy May 2017

Optimization Of Cardiac Pacing Stimulation By Current Configuration –A Theoretical, Numerical And Experimental Study., Flavio H. Fenton, Hila Dvir, Neil Hardy

Biology and Medicine Through Mathematics Conference

No abstract provided.


Building And Validating A Model For Investigating The Dynamics Of Isolated Water Molecules, Grant Cates May 2017

Building And Validating A Model For Investigating The Dynamics Of Isolated Water Molecules, Grant Cates

Senior Theses

Understanding how water molecules behave in isolation is vital to understand many fundamental processes in nature. To that end, scientists have begun studying crystals in which single water molecules become trapped in regularly occurring cavities in the crystal structure. As part of that investigation, numerical models used to investigate the dynamics of isolated water molecules are sought to help bolster our fundamental understanding of how these systems behave. To that end, the efficacy of three computational methods—the Euler Method, the Euler-Aspel Method and the Beeman Method—is compared using a newly defined parameter, called the predictive stability coefficient ρ. This …


A Study In Cross-Beam Polarization Fluorescence Photoactivation Localization Microscopy On Dendra2-Hemagluttinin In Fixed Nih3t3 Cells, Matthew M. Valles May 2017

A Study In Cross-Beam Polarization Fluorescence Photoactivation Localization Microscopy On Dendra2-Hemagluttinin In Fixed Nih3t3 Cells, Matthew M. Valles

Electronic Theses and Dissertations

Fluorescence microscopy is popular for its noninvasive properties and its use in imaging multiple species, simultaneously. Furthermore, superresolution fluorescence microscopy (SRFLM) utilizes photoswitchable proteins to improve the lateral resolution of conventional fluorescence microscopy by an order of magnitude. There is little work conducted on the study of excitation laser polarizations and their effect on the number of localizations as well as the brightness of molecules. This thesis attempts to study the effect of excitation wavelength polarization on the number of localizations and the brightness of molecules by comparing two orientations of circularly-polarized, excitation lasers. The first type of orientation involves …


Physical Principles Governing Colloidal Particle Deposition At Low Reynold’S Number: Applications To Microbial Biofilms, Sophia Wiedmann May 2017

Physical Principles Governing Colloidal Particle Deposition At Low Reynold’S Number: Applications To Microbial Biofilms, Sophia Wiedmann

Macalester Journal of Physics and Astronomy

Biofilms formed from the adhesion of microbes to a surface hold great relevance to public health and wastewater management. However, the physical principles underlying the attachment stage of biofilm formation, when individual microbes first come into contact with a substrate, are not well understood. Here I report on a model of colloidal particle attachment to a surface that incorporates the effects of diffusion, advection, gravity, and the hydrodynamic lift and drag forces experienced by polystyrene beads at low Reynold’s number. The simulation predicts attachment rates of 1.04x10^(-8)m/s, 0.73x10^(-8)m/s, and 1.29x10^(-8)m/s for beads of radius 0.25 µm, 0.55 µm, and 0.90 …


Development Of Microfluidic Platforms For Studies Of Cellular Organization In Escherichia Coli, Anna Dawn Jennings May 2017

Development Of Microfluidic Platforms For Studies Of Cellular Organization In Escherichia Coli, Anna Dawn Jennings

Masters Theses

Traditionally, bacteria cells have been imaged on agarose pads allowing them to grow in steady conditions for only a few doubling times. To understand the cellular organization in bacteria, tools are needed that allow the observation of log-phase cells for many generations. In recent years, several microfluidic platforms have been designed that allow microscopic imaging of bacteria for over one hundred generations. One of the most promising approaches has been the so-called mother machine design where bacteria grow in small dead-end channels all connected to a large main channel, which is used to flow fresh nutrients to the cells and …


Evolution, Ecology, And Disparities: Constructing Stature, Immune Functioning, And Reproduction In Brazilian Quilombo, And United States, Women, Anna C. Rivara Apr 2017

Evolution, Ecology, And Disparities: Constructing Stature, Immune Functioning, And Reproduction In Brazilian Quilombo, And United States, Women, Anna C. Rivara

USF Tampa Graduate Theses and Dissertations

The purpose of this dissertation is to test how growth, reproduction, and immune functioning interact in two populations of adult women residing in vastly different socio-economic and ecological environments, the Kalunga quilombo in Brazil, and the United States of America. The presence of life history trade-offs was tested to determine how the different envirnonments, and socio-ecological contexts of the populations were creating differential risks for health and reproductive outcomes, and life history trade-offs.

I hypothesized that the Kalunga people, living in very difficult and harsh conditions, would experience greater amounts of, and more severe, life history trade-offs than the U.S. …