Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Decomposition-Based Recovery Of Absorbers In Turbid Media, S D. Campbell, I L. Goodin, S D. Grobe, Qichang Su, Rainer Grobe Dec 2007

Decomposition-Based Recovery Of Absorbers In Turbid Media, S D. Campbell, I L. Goodin, S D. Grobe, Qichang Su, Rainer Grobe

Faculty publications – Physics

We suggest that the concept of the point-spread function traditionally used to predict the blurred image pattern of various light sources embedded inside turbid media can be generalized under certain conditions to predict also the presence and location of spatially localized absorbing inhomogeneities based on shadow point-spread functions associated with each localized absorber in the medium. The combined image obtained from several absorbers can then be decomposed approximately into the arithmetic sums of these individual shadow point-spread functions with suitable weights that can be obtained from multiple-regression analysis. This technique permits the reconstruction of the location of absorbers.


Design And Application Of Near Infrared Tunable Filter For Atst And Nst, Jun Ma Aug 2007

Design And Application Of Near Infrared Tunable Filter For Atst And Nst, Jun Ma

Dissertations

This thesis includes the following sections: a general design of the Near Infrared Tunable Filter (NIRTF) of Advanced Technology Solar Telescope (ATST) project and the Near Infrared Imaging Magnetograph (IRIM) of the New Solar Telescope (NST), the design of achromatic waveplates, the narrowband continuum observation of a Sunspot at 1.56 µm using IRIM instruments, and the coronal hole observation using the Digital Vector Magnetograph (VMG) at Big Bear Solar Observatory (BBSO).

A near infrared tunable filter system is designed with detailed optical parameters for each component in the system. Among these components, the achromatic waveplates, which used to be an …


Classical-Quantum Correspondence In Electron-Positron Pair Creation, N I. Chott, Qichang Su, Rainer Grobe Jul 2007

Classical-Quantum Correspondence In Electron-Positron Pair Creation, N I. Chott, Qichang Su, Rainer Grobe

Faculty publications – Physics

We examine the creation of electron-positron pairs in a very strong force field. Using numerical solutions to quantum field theory we calculate the spatial and momentum probability distributions for the created particles. A comparison with classical mechanical phase space calculations suggests that despite the fully relativistic and quantum mechanical nature of the matter creation process, most aspects can be reproduced accurately in terms of classical mechanics.


Velocity Half-Sphere Model For Multiple Scattering In A Semi-Infinite Medium, S Menon, Q Su, Rainer Grobe May 2007

Velocity Half-Sphere Model For Multiple Scattering In A Semi-Infinite Medium, S Menon, Q Su, Rainer Grobe

Faculty publications – Physics

We show how the velocity half-sphere model [S. Menon, Q. Su, and R. Grobe, Phys. Rev. E 72, 041910 (2005)] recently introduced to predict the propagation of light for an infinite turbid medium can be extended to account for the emission of multiply scattered light for a geometry with a planar boundary. A comparison with exact solutions obtained from Monte Carlo simulations suggests that this approach can improve the predictions of the usual diffusion theory for both isotropic and highly forward scattering media with reflecting interfaces.


Nonlocal Entanglement Of Coherent States, Complementarity, And Quantum Erasure, Christopher C. Gerry, Rainer Grobe Mar 2007

Nonlocal Entanglement Of Coherent States, Complementarity, And Quantum Erasure, Christopher C. Gerry, Rainer Grobe

Faculty publications – Physics

We describe a nonlocal method for generating entangled coherent states of a two-mode field wherein the field modes never meet. The proposed method is an extension of an earlier proposal [C. C. Gerry, Phys. Rev. A 59, 4095 (1999)] for the generation of superpositions of coherent states. A single photon injected into a Mach-Zehnder interferometer with cross-Kerr media in both arms coupling with two external fields in coherent states produces entangled coherent states upon detection at one of the output ports. We point out that our proposal can be alternatively viewed as a "which path" experiment, and in the case …


Temperature-Driven Transition From The Wigner Crystal To The Bond-Charge-Density Wave In The Quasi-One-Dimensional Quarter-Filled Band, R. T. Clay, Rahul Hardikar, S. Mazumdar Jan 2007

Temperature-Driven Transition From The Wigner Crystal To The Bond-Charge-Density Wave In The Quasi-One-Dimensional Quarter-Filled Band, R. T. Clay, Rahul Hardikar, S. Mazumdar

Scholarship and Professional Work - LAS

It is known that within the interacting electron model Hamiltonian for the one-dimensional 1/4-filled band, the singlet ground state is a Wigner crystal only if the nearest-neighbor electron-electron repulsion is larger than a critical value. We show that this critical nearest-neighbor Coulomb interaction is different for each spin subspace, with the critical value decreasing with increasing spin. As a consequence, with the lowering of temperature, there can occur a transition from a Wigner crystal charge-ordered state to a spin-Peierls state that is a bond-charge-density wave with charge occupancies different from the Wigner crystal. This transition is possible because spin excitations …


Unitary And Nonunitary Approaches In Quantum Field Theory, K D. Lamb, Christopher C. Gerry, Rainer Grobe Jan 2007

Unitary And Nonunitary Approaches In Quantum Field Theory, K D. Lamb, Christopher C. Gerry, Rainer Grobe

Faculty publications – Physics

We use a simplified essential state model to compare two quantum field theoretical approaches to study the creation of electron-positron pairs from the vacuum. In the unitary approach the system is characterized by a state with different numbers of particles that is described by occupation numbers and evolves with conserved norm. The nonunitary approach can predict the evolution of wave functions and density operators with a fixed number of particles but time-dependent norms. As an example to illustrate the differences between both approaches, we examine the degree of entanglement for the Klein paradox, which describes the creation of an electron-positron …