Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Electron Energy Loss In Oxygen Plasmas, G. A. Victor, John C. Raymond, Jane L. Fox Nov 1994

Electron Energy Loss In Oxygen Plasmas, G. A. Victor, John C. Raymond, Jane L. Fox

Jane L. Fox

The results of calculations of the energy deposition of energetic electrons in oxygen plasmas are given. In a pure oxygen plasma even with large fractional ionization, much of the electron energy results in the production of additional ionization and excited electronic states. Results are given for separate calculations using theoretical and experimental cross sections for the important O I excitations of 1S and 1D because the theoretical and experimental data are not in agreement. These results are useful for understanding the spectra of oxygen-rich supernova remnants.


Subpicosecond Thomson Scattering Measurements Of Optically Ionized Helium Plasmas, T. E. Glover, Thomas D. Donnelly, E. A. Lipman, A. Sullivan, R. W. Falcone Jul 1994

Subpicosecond Thomson Scattering Measurements Of Optically Ionized Helium Plasmas, T. E. Glover, Thomas D. Donnelly, E. A. Lipman, A. Sullivan, R. W. Falcone

All HMC Faculty Publications and Research

We present the first subpicosecond time-resolved temperature measurements of plasmas produced by high-intensity optical ionization. Thomson scattering is used to measure electron and ion temperatures of helium plasmas created by 125 fs, 800 nm laser pulses focused to an intensity of 2 × 1017 W/cm2. We find that the electron temperature is accurately predicted by a tunneling ionization model. The measured ion temperature is consistent with direct heating by the laser pulse.


X-Rays From Microstructured Targets Heated By Femtosecond Lasers, S. P. Gordon, Thomas D. Donnelly, A. Sullivan, H. Hamster, R. W. Falcone Apr 1994

X-Rays From Microstructured Targets Heated By Femtosecond Lasers, S. P. Gordon, Thomas D. Donnelly, A. Sullivan, H. Hamster, R. W. Falcone

All HMC Faculty Publications and Research

We have demonstrated efficient conversion of ultrashort-pulse laser energy to x rays with energies above 1 keV, using laser-produced plasmas generated on a variety of microstructured surfaces. Lithographically produced grating targets generated 0.1 mJ of kilo-electron-volt x rays, and porous gold and aluminum targets emitted 1 mJ. This represents an improvement of a factor of 100 over flat targets. The K-shell emission spectrum of porous aluminum was composed primarily of heliumlike spectral lines.