Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Band Dispersion In C60(111): An Angle-Resolved Photoemission Study, P. J. Benning, C. G. Olson, David W. Lynch, J. H. Weaver Oct 1994

Band Dispersion In C60(111): An Angle-Resolved Photoemission Study, P. J. Benning, C. G. Olson, David W. Lynch, J. H. Weaver

Physics and Astronomy Publications

Angle-resolved photoemission studies of single-crystal C60(111) films grown on GeS(001) reveal changes in valence feature line shape with emission angle and photon energy that are indicative of band dispersion. For an excitation energy (hν) of 10 eV, normal emission spectra show four sharp structures within the ∼1.1-eV-wide valence feature derived from the second highest molecular orbital (HOMO-1) of C60. For hν=8.1 eV, the 1-eV-wide HOMO-derived feature exhibits changes with emission angle mainly due to dispersion of 0.6 eV in the unoccupied bands. The distribution of electronic states underlying HOMO and HOMO-1 indicates ...


Experimental Stark Shift Of Several Nii And Oii Spectral Lines, Mara Scepanovic, Vladimir Milosavljevic, Stevan Djenize, Mihajlo Platisa, Jaroslav Labat Jun 1994

Experimental Stark Shift Of Several Nii And Oii Spectral Lines, Mara Scepanovic, Vladimir Milosavljevic, Stevan Djenize, Mihajlo Platisa, Jaroslav Labat

Articles

Stark shift of four NII and seven OII spectral lines have been measured for the first time in the linear low pressure pulsed arc plasma and compared with existing theoretical values.


Tabletop X-Ray Lasers, D. C. Eder, P. Amendt, L. B. Dasilva, R. A. London, B. J. Macgowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Silks, Thomas D. Donnelly, R. W. Falcone, G. L. Strobel May 1994

Tabletop X-Ray Lasers, D. C. Eder, P. Amendt, L. B. Dasilva, R. A. London, B. J. Macgowan, D. L. Matthews, B. M. Penetrante, M. D. Rosen, S. C. Silks, Thomas D. Donnelly, R. W. Falcone, G. L. Strobel

All HMC Faculty Publications and Research

Details of schemes for two tabletop size x‐ray lasers that require a high‐intensity short‐pulse driving laser are discussed. The first is based on rapid recombination following optical‐field ionization. Analytical and numerical calculations of the output properties are presented. Propagation in the confocal geometry is discussed and a solution for x‐ray lasing in Li‐like N at 247 Å is described. Since the calculated gain coefficient depends strongly on the electron temperature, the methods of calculating electron heating following field ionization are discussed. Recent experiments aimed at demonstrating lasing in H‐like Li at 135 Å ...