Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Functional Nanoparticles: Tin Monoxide And Molybdenum Disulfide Quantum Dots On Graphene Nanosheets, Denys Vidish Sep 2021

Functional Nanoparticles: Tin Monoxide And Molybdenum Disulfide Quantum Dots On Graphene Nanosheets, Denys Vidish

Electronic Thesis and Dissertation Repository

Light harvesting can be referred to the use of an ensemble of different nanoparticles, or quantum dots, or other absorbers to optimize the ability to capture a given spectrum of electromagnetic radiation (for example the solar spectrum under specific atmospheric conditions) in a light-absorbing system. To this end, different nanoparticles play complementary functions within the system and absorb or scatter light at different wavelength intervals. Light harvesting finds applications in fields as diverse as solar cells, photosynthesis and photocatalysis. Graphene supporting a set of different semiconducting nanoparticles has often been proposed as light harvesters. To further this concept, my thesis …


High-Pressure High-Temperature Exploration Of Phase Boundaries Using Raman Spectroscopy, Jasmine Kashmir Hinton May 2019

High-Pressure High-Temperature Exploration Of Phase Boundaries Using Raman Spectroscopy, Jasmine Kashmir Hinton

UNLV Theses, Dissertations, Professional Papers, and Capstones

Metastability of states can provide interesting properties that may not be readily accessible in a material’s ground state. Many materials show high levels of polymorphism, indicating a rich energy landscape and a potential for metastable states. Melt crystallization techniques provide a potential route to these states. We use a resistively heated diamond anvil cell (DAC) with fine control of a system’s pressure and temperature to explore these systems. Raman spectroscopy is used to track subtle structural changes across phase boundaries. Organic systems, such as glycine and aspirin, were our initial interest due to their high polymorphism and reported low melting …


The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in …


A Study Of The Structure Of Light Tin Isotopes Via Single-Neutron Knockout Reactions, Andrew Franklin Ayres Aug 2014

A Study Of The Structure Of Light Tin Isotopes Via Single-Neutron Knockout Reactions, Andrew Franklin Ayres

Doctoral Dissertations

The region around 100 Sn [100Sn] is important because of the close proximity to the N=Z=50 magic numbers, the rp process, and the proton drip-line. Alpha decay measurements show a reversal in the spin-parity assignments of the ground and first excited states in 101 Sn [101Sn] compared to 105 Te [105Te]. However, the lightest odd- mass tin isotope with a firm spin-parity assignment is 109 Sn [109Sn]. The d 5/2 [d5/2] and g 7/2 [g7/2] single-particle states above N=50 are near degenerate, evidenced by the excitation energy of the first excited state in 101 Sn at only 172 keV. The …


Pressure Induced Phase Transformation Of Sno2: An Ab Initio Constant Pressure Study, Daniel Tesfai Yehdego Jan 2009

Pressure Induced Phase Transformation Of Sno2: An Ab Initio Constant Pressure Study, Daniel Tesfai Yehdego

Open Access Theses & Dissertations

The behavior of SnO2 under rapid hydrostatic pressures is studied using constant-pressure ab initio simulations. The rutile-type SnO2 gradually transforms into the CaCl2-type structure at 15 GPa. At a pressure of about 20 GPa, a phase transformation into a cubic fluorite-type structure is observed. The orthorhombic Pnma cotunnite-structured phase is observed above 150 GPa. The mechanisms of these phase transformations at the atomistic level are discussed.


Spectroscopic Studies Of Laser Plasmas For Euv Sources, Simi A. George Jan 2007

Spectroscopic Studies Of Laser Plasmas For Euv Sources, Simi A. George

Electronic Theses and Dissertations

With the availability of high reflectivity multilayer mirrors and zone plate lenses, the EUV region (5nm - 40nm) of the electromagnetic spectrum is currently being explored for applications of nanoscale printing and imaging. Advances made in this area have consequences for many areas of science. Research for producing a compact, bright EUV source for laboratory use has gained momentum in recent years. For this study, EUV radiation is produced by irradiating target materials using a focused laser beam. Focused laser beam ionizes the target to create a hot, dense, pulsed plasma source, where emission is a result of the relaxation …


Radiation Studies Of The Tin-Doped Microscopic Droplet Laser Plasma Light Source Specific To Euv Lithography, Chiew-Seng Koay Jan 2006

Radiation Studies Of The Tin-Doped Microscopic Droplet Laser Plasma Light Source Specific To Euv Lithography, Chiew-Seng Koay

Electronic Theses and Dissertations

Extreme ultraviolet lithography(EUVL) is being developed worldwide as the next generation technology to be inserted in ~ 2009 for the mass production of IC chips with feature sizes <35 nm. One major challenge to its implementation is the development of a 13.5 nm EUV source of radiation that meets the requirements of current roadmap designs of the source of illumination in commercial EUVL scanners. The light source must be debris-free, in a free-space environment with the imaging EUV optics that must provide sufficient, narrow spectral band EUV power to print 100 wafers/hr. To meet this need, extensive studies on emission from a laser plasma source utilizing tin-doped droplet target was conducted. Presented in this work, are the many optical techniques such as spectroscopy, radiometry, and imaging, that were employed to characterize and optimize emission from the laser plasma source State of the art EUV spectrographs were employed to observe the source's spectrum under various laser irradiation conditions. Comparing the experimental spectra to those from theory, has allowed the determination of the Sn ion stages responsible for emitting into the useful EUV bandwidth. Experimental results were compared to spectral simulations obtained using Collisional-Radiative Equilibrium (CRE) model, as well. Moreover, extensive measurements surveying source emission from 2 nm to 30 nm, which is the region of the electromagnetic spectrum defined as EUV, was accomplished. Absolutely calibrated metrology was employed with the Flying Circus instrument from which the source's conversion efficiency (CE)--from laser to the useful EUV energy--was characterized under various laser irradiation conditions. Hydrodynamic simulations of the plasma expansion together with the CRE model predicted the condition at which optimum conversion could be attained. The condition was demonstrated experimentally, with the highest CE to be slightly above 2%, which is the highest value among all EUV source contenders. In addition to laser intensity, the CE was found to depend on the laser wavelength. For better understanding, this observation is compared to results from simulations. Through a novel approach in imaging, the size of the plasma was characterized by recording images of the plasma within a narrow band, around 13.5 nm. The size, approximately 100 ìm, is safely within the etendue limit set by the optical elements in the EUV scanner. Finally, the notion of irradiating the target with multiple laser beams was explored for the possibility of improving the source's conversion efficiency.