Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Investigation Of Optical Second Harmonic Generation From Si (100) With Process Tailored Surface & Embedded Ag Nanostructures For Advanced Si Nonlinear Nanophotonics, Gourav Bhowmik Jan 2019

Investigation Of Optical Second Harmonic Generation From Si (100) With Process Tailored Surface & Embedded Ag Nanostructures For Advanced Si Nonlinear Nanophotonics, Gourav Bhowmik

Legacy Theses & Dissertations (2009 - 2024)

The challenge of current microelectronic architecture in transmission bandwidth and power consumption can be potentially solved by using silicon photonics technologies that are compatible with modern CMOS fabrication. One of the critical active photonic devices for Si photonics is a Si based optical modulator. Most of the reported silicon modulators rely on the free carrier plasma dispersion effect. In those cases, a weak change of the refractive index obtained by carrier accumulation, injection or depletion is utilized in a Mach-Zehnder interferometer or a microring resonator to achieve intensity modulation, rendering them difficult for chip-level implementation due to a large footprint …


Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi May 2016

Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi

Doctoral Dissertations

Metal particles of the dimensions of the order of 1 to 100's of nanometers show unique properties that are not clearly evident in their bulk state. These nanoparticles are highly reactive and sensitive to the changes in the vicinity of the particle surface and hence find applications in the field of sensing of chemical and biological agents, catalysis, energy harvesting, data storage and many more. By synthesizing bimetallic nanoparticles, a single nanoparticle can show multifunctional characteristics. The focus of this thesis is to detail the synthesis and understand the properties of bimetallic nanomaterial systems that show interesting optical, chemical, and …


Electronic Structure And Stability Of Ligated Superatoms And Bimetallic Clusters, William H. Blades Jan 2016

Electronic Structure And Stability Of Ligated Superatoms And Bimetallic Clusters, William H. Blades

Theses and Dissertations

Quantum confinement in small metal clusters leads to a bunching of states into electronic shells reminiscent of shells in atoms. The addition of ligands can tune the valence electron count and electron distribution in metal clusters. A combined experimental and theoretical study of the reactivity of methanol with AlnIm clusters reveals that ligands can enhance the stability of clusters. In some cases the electronegative ligand may perturb the charge density of the metallic core generating active sites that can lead to the etching of the cluster. Also, an investigation is conducted to understand how the bonding …


Atomic And Electronic Structure Of A Ligand-Protected Bimetallic Nanocluster, Ag4ni2(Dmsa)4, Anthony F. Pedicini May 2013

Atomic And Electronic Structure Of A Ligand-Protected Bimetallic Nanocluster, Ag4ni2(Dmsa)4, Anthony F. Pedicini

Theses and Dissertations

An important direction in nanoscale science is to synthesize materials whereby atomic clusters serve as the building blocks. Properties of these clusters can be controlled through size and composition, and such an approach offers a pathway toward designing larger, customized materials. One way to stabilize such materials is through the use of ligated clusters. Ag4Ni2(DMSA)4 is one such cluster, the first with a bimetallic core, and has been stabilized by the experimental group of A. Sen at The Pennsylvania State University. The theoretical studies undertaken in this thesis were directed toward providing information on the atomic structure, nature of electronic …


Finite-Difference Time-Domain Modeling Of Nickel Nanorods, Joseph Steele Parris May 2012

Finite-Difference Time-Domain Modeling Of Nickel Nanorods, Joseph Steele Parris

Theses and Dissertations

Theoretical and experimental plasmonics is a growing field as a method to create near fields at sub-wavelength distances. In this thesis, a finite-difference time-domain method is used to simulate electromagnetic waves onto a thin film that present of nickel nanorods with sharp apexes. The absorbed, transmitted, and reflected fields were shown to depend linearly on silver film thickness and nanotip length. The electric field is visualized along the tip to show strong charge density along the base of the tip’s apex and how that density changes for wavelength, metal, and source tilt. Lastly, the study shows gold film on the …


Thermal, Electrical, And Structural Behavior Of Silver Chalcogenide Composites, Jeremy Capps Jan 2011

Thermal, Electrical, And Structural Behavior Of Silver Chalcogenide Composites, Jeremy Capps

All Theses

In this thesis and the contained publications, it is demonstrated that it is not only possible to improve the dimensionless figure of merit (ZT) of silver chalcogenide composites, but it is also possible to move the maximum ZT value into a more favorable temperature range for power production. It is shown that by introducing disorder, stress, and phase competition into a system, a reduction in the material's thermal conductivity can be realized. The binaries Ag2Te and Ag2Se are re-examined in detail before moving on to examine Ag2Te1-xSex composites. The maximum ZT (ZT = 0.92) of Ag2Te0.5Se0.5 is measured at T= …


Tailoring Local Conductivity By The Formation Of Ag Nanoclusters In Sio2 Xerogel Films, Ricky Caperton Jan 2009

Tailoring Local Conductivity By The Formation Of Ag Nanoclusters In Sio2 Xerogel Films, Ricky Caperton

Theses and Dissertations

Porous silicon dioxide thin films were produced via dip-coating and doped with Ag+ by adding AgNO3 to the dipping solution. Nanoparticles were formed within the pores of these films by UV exposure. Nanoparticle formation was confirmed by UV-visible spectroscopy and Transmission Electron Microscopy (TEM). Conductive Atomic Force Microscopy (CAFM) showed that the conductivity of the films decreased upon exposure to UV. This decrease in the conductivity is most likely due to the clustering of charge carriers. Initially, Ag+ ions are attached to negatively charged pore walls in a dense packing network. Upon UV exposure (125 mW @ 266 nm), the …


The Study Of Oxygen Transport Through Polycrystalline, Single Crystal And Alloyed Silver, Dongchuan Wu Jul 1990

The Study Of Oxygen Transport Through Polycrystalline, Single Crystal And Alloyed Silver, Dongchuan Wu

Physics Theses & Dissertations

The permeation of oxygen through large grain polycrystalline silver, through the (110), (111) and (100) single crystals of silver and through Ag0.05Zr alloy have been studied over the temperature range of 400 - 800 °C. In addition, studies were also conducted using glow discharge dissociation of the supply side ( upstream ) molecular oxygen in order to examine whether normal dissociative adsorption is a limiting step in the overall transport process.

The permeability of oxygen through polycrystalline silver was found to be quite linear and quite repeatable. The diffusivity measurements were found to exhibit two distinct linear regions, one above …