Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Modeling Uv Light Through N95 Filters, Lorenzo Hess Jan 2023

Modeling Uv Light Through N95 Filters, Lorenzo Hess

Honors Projects

Reuse of N95 FFRs helps mitigate the effects of shortages. UV-C exposure is an ideal method for the decontamination necessary for FFR reuse. Recent research quantifies the transmittance of UV-C through the 3M1870+ and 3M9210+ FFRs [1]. Other research measures the reduction in viral load in relation to UV-C exposure time [11]. We design and program a ray tracing simulator in MATLAB to characterize the distribution of scattered photons in N95 FFRs. We implement an object-oriented FFR with configurable physical characteristics. We use the simulator to record the number of photons available for decontamination in each sub-layer of the filtering …


Display Applications For Grating Angle Magnification Accelerated Angular Scanners, Daniel Jesus Valdes Dec 2022

Display Applications For Grating Angle Magnification Accelerated Angular Scanners, Daniel Jesus Valdes

UNLV Theses, Dissertations, Professional Papers, and Capstones

This work includes experimental demonstrations of grating angle magnification accelerated optical beam scanners. Diffraction grating scanners governed by the grating equation can have scan speed advantages over the flat mirror bound by Snell's law of reflection. Scan speed enhancement of 750% was achieved with a 635nm laser and 1800 groove/mm diffraction grating configuration thanks to the grating angle magnification. A three-color diffraction grating scanner shows identical results at larger scan angles. Tunable acceleration speed is a feature enabled by the diffraction grating scanner to operate in a high-speed scanning region and/or high-resolution scanning region depending on the demands of the …


Self-Contained Photon Coincidence Counting With Ni Myrio Ecosystem, Georges Oates Larsen, Andres H. La Rosa Jun 2021

Self-Contained Photon Coincidence Counting With Ni Myrio Ecosystem, Georges Oates Larsen, Andres H. La Rosa

University Honors Theses

Digital coincidence counting units (CCU) have made experimental verification of fundamental quantum mechanical principles financially accessible to undergraduate level teaching programs. However, recent implementations of these systems are not easily ported to National Instruments (NI) FPGAs, making them unsuitable for physics departments that have heavily invested in the NI ecosystem. Therefore, there is clear need for a detailed implementation based on an NI FPGA. We present a formal description of one such implementation, based on the NI myRIO (NI's lower-cost, student-oriented offering) which achieves 6.9 ns minimum guaranteed-distinguishable delay and 32.2 MHz peak coincidence counting rate with four input channels …


Improving The Efficiency Of Photon Collection By Compton Rescue, Alexander W. Stevenson Mar 2011

Improving The Efficiency Of Photon Collection By Compton Rescue, Alexander W. Stevenson

Theses and Dissertations

A method to improve the efficiency of photon collection in thin planar HPGe detectors was investigated. The method involved implementing a second HPGe detector to collect Compton scattered photons from the primary detector and incorporating coincident interactions in the two detectors that sum to the full energy event into the energy spectrum. This method is termed Compton rescue because the Compton scattered photons make a partial energy deposition in the primary detector and are added back to the spectrum after being detected by the second detector. This research has implications on improving the efficiency of positron annihilation spectroscopy (PAS) techniques …


Computational Study Of The Near Field Spontaneous Creation Of Photonic States Coupled To Few Level Systems, Sergio Tafur Jan 2011

Computational Study Of The Near Field Spontaneous Creation Of Photonic States Coupled To Few Level Systems, Sergio Tafur

Electronic Theses and Dissertations

Models of the spontaneous emission and absorption of photons coupled to the electronic states of quantum dots, molecules, N-V (single nitrogen vacancy) centers in diamond, that can be modeled as artificial few level atoms, are important to the development of quantum computers and quantum networks. A quantum source modeled after an effective few level system is strongly dependent on the type and coupling strength the allowed transitions. These selection rules are subject to the Wigner-Eckert theorem which specifies the possible transitions during the spontaneous creation of a photonic state and its subsequent emission. The model presented in this dissertation describes …


Modeling And Design Of A Photonic Crystal Chip Hosting A Quantum Network Made Of Single Spins In Quantum Dots That Interact Via Single Photons, Hubert P. Seigneur Jan 2010

Modeling And Design Of A Photonic Crystal Chip Hosting A Quantum Network Made Of Single Spins In Quantum Dots That Interact Via Single Photons, Hubert P. Seigneur

Electronic Theses and Dissertations

In this dissertation, the prospect of a quantum technology based on a photonic crystal chip hosting a quantum network made of quantum dot spins interacting via single photons is investigated. The mathematical procedure to deal with the Liouville-Von Neumann equation, which describes the time-evolution of the density matrix, was derived for an arbitrary system, giving general equations. Using this theoretical groundwork, a numerical model was then developed to study the spatiotemporal dynamics of entanglement between various qubits produced in a controlled way over the entire quantum network. As a result, an efficient quantum interface was engineered allowing for storage qubits …


Characteristics Of Two-Dimensional Triangular And Three-Dimensional Face-Centered-Cubic Photonic Crystals, Jeffery D. Clark Mar 2006

Characteristics Of Two-Dimensional Triangular And Three-Dimensional Face-Centered-Cubic Photonic Crystals, Jeffery D. Clark

Theses and Dissertations

The fabrication of photonic crystals (PhC) with photonic band gaps (PBG) in the visible range is a difficult task due to the small structural feature sizes of the PhC. The particular type of PhC examined is a two-dimensional (2-D) triangular structure with a PBG designed for visible wavelengths with applications in visible integrated photonic systems. This work examines the processes involved and viability of fabricating 2-D triangular PhC's by a variety of techniques: focused ion beam, electron lithography and holographic photo-polymerization/lithography. The design of the PhC was based on a program created to display gap maps for triangular structures. The …