Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Physics

A Convolutional Neural Network Based Approach To Study The Gravitational Waves From Core-Collapse Supernovae In Ligo's Third Observation Run: Detection Efficiency And Parameter Estimation, Bhawana Sedhai Jul 2023

A Convolutional Neural Network Based Approach To Study The Gravitational Waves From Core-Collapse Supernovae In Ligo's Third Observation Run: Detection Efficiency And Parameter Estimation, Bhawana Sedhai

Theses and Dissertations

Core-Collapse Supernova (CCSN) is one of the most anticipated sources of Gravitational Waves (GW) arriving at the advanced LIGO detectors during the fourth observation run (O4). CCSN are rare, weak and unmodeled having a very low rate of occurrence in our galaxy (estimated 2 per century). Thus, detection of GW from CCSN is a challenging problem. An analysis pipeline used in this study is Multi-Layer Signal Enhancement with cWB and CNN or MuLaSEcC that combines Machine Learning methods with a network of Gravitational Wave detectors to identify and reconstruct signals from core collapse supernovae, while minimizing false alarms through the …


Chasing Transients: Constructing Local Galaxy Catalogs For Electromagnetic Follow-Up Of Gravitational Wave Events, Chaoran Zhang Dec 2022

Chasing Transients: Constructing Local Galaxy Catalogs For Electromagnetic Follow-Up Of Gravitational Wave Events, Chaoran Zhang

Theses and Dissertations

Gravitational waves (GWs) provide a new window for observing the universe which is not possible using traditional electromagnetic (EM) wave astronomy. The coalescence of compact object binaries, such as black holes (BHs) and neutron stars (NSs) generates “loud" GW signals that are detectable by the LIGO-Virgo-KAGRA (LVK) GW Observa- tory. If the binary contains at least one NS, there is a possibility that an observable EM counterpart will be launched during and/or after the merger. The first joint detection of GW radiation (GW170817) and its EM counterpart (AT 2017gfo) greatly extended our understanding of the universe in many fields, such …


Search For Gravitational Waves From Core Collapse Supernovae In Ligo's Observation Runs Using A Network Of Detectors, Shahrear Khan Faisal Dec 2022

Search For Gravitational Waves From Core Collapse Supernovae In Ligo's Observation Runs Using A Network Of Detectors, Shahrear Khan Faisal

Theses and Dissertations

Core-Collapse Supernova (CCSN) is one of the most anticipated sources of Gravitational Waves (GW) in the fourth observation run (O4) of LIGO and other network of GW detectors. A very low rate of galactic CCSN, coupled with the fact that the CCSN waveforms are unmodeled, make detection of these signals extremely challenging. Mukherjee et. al. have developed a new burst search pipeline, the Multi-Layer Signal Enhancement with cWB and CNN or MuLaSEcC, that integrates a non-parametric signal estimation and Machine Learning. MuLaSEcC operates on GW data from a network of detectors and enhances the detection probability while reducing the false …


Gravitational Wave Timing Residual Models For Pulsar Timing Experiments, Casey Mcgrath Aug 2021

Gravitational Wave Timing Residual Models For Pulsar Timing Experiments, Casey Mcgrath

Theses and Dissertations

The ability to detect gravitational waves now gives scientists and astronomers a new way in which they can study the universe. So far, the scientific collaboration LIGO has been successful in detecting binary black hole and binary neutron star mergers. These types of sources produce gravitational waves with frequencies of the order hertz to millihertz. But there do exist other theoretical sources which would produce gravitational waves in different parts of the frequency spectrum. Of these are the theoretical mergers of supermassive black hole binaries (SMBHBs), which could occur upon the merging of two galaxies with supermassive black holes at …


Beyond The Standard Models Of Particle Physics And Cosmology, Gabriele Rigo May 2021

Beyond The Standard Models Of Particle Physics And Cosmology, Gabriele Rigo

Dissertations - ALL

Despite their numerous successes both from the theoretical and experimental point of view, conceptual and observational evidence suggests the Standard Models of Particle Physics and Cosmology should be considered incomplete theories, reliable only within their well-defined regime of validity. This dissertation covers various possible extensions of those models from the theoretical, phenomenological and model-building perspective. The topics analyzed range from extra-dimensional approaches to the hierarchy problem, to the AdS/CFT description of perturbative anomaly inflow, and new probes of vacuum energy in neutron stars and gravitational waves.


Beyond The Standard Models Of Particle Physics And Cosmology, Gabriele Rigo May 2021

Beyond The Standard Models Of Particle Physics And Cosmology, Gabriele Rigo

Dissertations - ALL

Despite their numerous successes both from the theoretical and experimental point of view, conceptual and observational evidence suggests the Standard Models of Particle Physics and Cosmology should be considered incomplete theories, reliable only within their well-defined regime of validity. This dissertation covers various possible extensions of those models from the theoretical, phenomenological and model-building perspective. The topics analyzed range from extra-dimensional approaches to the hierarchy problem, to the AdS/CFT description of perturbative anomaly inflow, and new probes of vacuum energy in neutron stars and gravitational waves.


Automated Identification Of Lines In Data From Gravitational Wave Detectors, Thomas A. Cruz May 2021

Automated Identification Of Lines In Data From Gravitational Wave Detectors, Thomas A. Cruz

Theses and Dissertations

On the frontier of gravitational wave (GW) astronomy, the LIGO detectors record vast quantities of data that need to be analyzed constantly for rare and transient GW signals. A foundational problem in LIGO data analysis is the identification of spectral line features in the Power Spectral Density (PSD) of the data. Such line features correspond to high power terrestrial or instrumental signals that must be removed from the data before any search for GW signals can take place. In this study the method developed aims to automate the extraction of the frequencies and bandwidths of the lines, treated as sharp …


Improving The Data Quality In Gravitation-Wave Detectors By Mitigating Transient Noise Artifacts, Kentaro Mogushi Jan 2021

Improving The Data Quality In Gravitation-Wave Detectors By Mitigating Transient Noise Artifacts, Kentaro Mogushi

Doctoral Dissertations

“The existence of gravitational waves (GWs), small perturbations in spacetime produced by accelerating massive objects was first predicted in 1916 as solutions of Einstein’s Theory of General Relativity (Einstein, 1916). Detecting and analyzing GWs produced by sources allows us to probe astrophysical phenomena.

The era of GW astronomy began from the first direct detection of the coalescence of a binary black hole in 2015 by the collaboration of the advanced Laser Interferometer Gravitational-wave Observatory (LIGO) (Aasi et al., 2015) and advanced Virgo (Abbott et al., 2016a). Since 2015, LIGO-Virgo detected about 50 confident transient events of GW signals (Abbott et …


Topics In Gravitational Wave Physics, Aaron David Johnson Jul 2020

Topics In Gravitational Wave Physics, Aaron David Johnson

Graduate Theses and Dissertations

We begin with a brief introduction to gravitational waves. Next we look into the origin of the Chandrasekhar transformations between the different equations found by perturbing a Schwarzschild black hole. Some of the relationships turn out to be Darboux transformations. Then we turn to GW150914, the first detected black hole binary system, to see if the nonlinear memory might be detectable by current and future detectors. Finally, we develop an updated code for computing equatorial extreme mass ratio inspirals which will be open sourced as soon as it has been generalized for arbitrary inclinations.


Searching For Supermassive Binary Black Holes And Their Gravitational Waves, Karishma Bansal Jul 2019

Searching For Supermassive Binary Black Holes And Their Gravitational Waves, Karishma Bansal

Physics & Astronomy ETDs

The recent discovery of gravitational waves (GWs) by the LIGO collaboration has opened a new observing window on the universe, but it is limited to the GWs in the frequency range of 10-1000 Hz. The main motivation of this thesis is to consider the possibility of detecting low frequency (nHz) GWs. In the pursuit of these waves, we need to understand their source of origin and build a detector with the required sensitivity. Low-frequency waves are expected as a result of coalescing binary supermassive black holes (SMBBHs). We hope to detect these waves in the near future using pulsar timing …


Analytic Modeling Of Eccentric Binary Black Holes : From Inspiral To Merger, Dillon Paige Buskirk Jan 2019

Analytic Modeling Of Eccentric Binary Black Holes : From Inspiral To Merger, Dillon Paige Buskirk

Theses, Dissertations and Capstones

The orbital evolution of black hole binaries is described by two main phases: the inspiral and the merger. Using the post-Newtonian (PN) theory for the inspiral phase of the binary, we build up a Mathematica script to obtain strain waveforms for the inspiral. We expand our previous inspiral formulation to include eccentric orbits, which greatly complicates the calculations. Since this model breaks down as the two bodies approach merger, a separate model for the merger and ring-down is required. This part of the evolution is highly non-linear and numerical relativity (NR) is required to simulate this problem. However, this is …


Gravitational Waves Research At Toros Utrgv, Pamela Ivonne Lara Jan 2018

Gravitational Waves Research At Toros Utrgv, Pamela Ivonne Lara

Open Access Theses & Dissertations

The detection of gravitational waves (GW) has directly opened a new era in the observation of cosmic events. One hundred years after its theoretical prediction we find ourselves immerged in the multi-messenger study of the signals at the root of gravitational wave detection. The electromagnetic (EM) counterpart to GW is the optical portion of that signal and the main objective in the organization of TOROS Collaboration: finding and studying kilonovas, the name given by Metzger (Metzger et al, 2010), to the EM counterpart to gravitational waves.

In order for TOROS to find kilonovas, it needed to create a python language …


Modeling Gravitational-Wave Sources For Pulsar Timing Arrays, Joseph Simon Aug 2017

Modeling Gravitational-Wave Sources For Pulsar Timing Arrays, Joseph Simon

Theses and Dissertations

The recent direct detections of gravitational waves (GWs) from merging black holes by the Laser Interferometer Gravitational-wave Observatory (LIGO) marks the beginning of the era of GW astronomy and promises to transform fundamental physics. In the coming years, there is hope for detections across the mass scale of binary black holes.

Pulsar Timing Arrays (PTAs) are galactic-scale low-frequency (nHz - $\mu$Hz) GW observatories, which aim to directly detect GWs from binary supermassive black holes (SMBHs) ($\gtrsim 10^{7} \msun$). The frequency and black hole mass range that PTAs are sensitive to is orders of magnitude different from those LIGO is observing, …


A Thermal Enclosure Prototype For A Suspended Inertial Sensor, Mohammad Afrough Jan 2017

A Thermal Enclosure Prototype For A Suspended Inertial Sensor, Mohammad Afrough

Electronic Theses and Dissertations

Although Ligo has detected six gravitational waves so far, people are still conducting research to improve the sensitivity of the detectors in different aspects. At low frequency band, one of the main sources of noise is seismic vibration. Lowering the noise level in this band, helps us to follow the coalescence of compact binary systems earlier in their transformation and increase the signal-to-noise ratio. It also allows us to detect merger of more massive objects. Hence, an isolation system is required to reduce the seismic noise. As a part of isolation system (which can be a passive or an active …


Evaluating The Efficacy Of Educational Games In Promoting Interest And Understanding Of Gravitational Wave Physics, Jonathan Wheeler Mar 2016

Evaluating The Efficacy Of Educational Games In Promoting Interest And Understanding Of Gravitational Wave Physics, Jonathan Wheeler

Honors Theses

The LIGO Scientific Collaboration Education and Public Outreach group seeks to ameliorate the lack of public understanding of gravitational wave physics. One such effort is Black Hole Pong, a remake of the 1972 arcade classic developed by researchers at University of Birmingham, UK. Black Hole Pong differs from other educational games in that it stretches the laws of physics to make the user experience more exciting. Another effort has been my own work in developing a game called Chickens in Space where players can create mass, which coalesces and eventually forms black holes, which serve as obstacles to the players. …


Self-Force On Accelerated Particles, Thomas Michael Linz May 2015

Self-Force On Accelerated Particles, Thomas Michael Linz

Theses and Dissertations

The likelihood that gravitational waves from stellar-size black holes spiraling into a supermassive black hole would be detectable by a space based gravitational wave observatory has spurred the interest in studying the extreme mass-ratio inspiral (EMRI) problem and black hole perturbation theory (BHP). In this approach, the smaller black hole is treated as a point particle and its trajectory deviates from a geodesic due to the interaction with its own field. This interaction is known as the gravitational self-force, and it includes both a damping force, commonly known as radiation reaction, as well as a conservative force. The computation of …


Topics In Broadband Gravitational-Wave Astronomy, Sydney Joanne Chamberlin May 2015

Topics In Broadband Gravitational-Wave Astronomy, Sydney Joanne Chamberlin

Theses and Dissertations

The direct detection of gravitational waves promises to open a new observational window onto the universe, and a number of large scale efforts are underway worldwide to make such a detection a reality. In this work, we attack some of the current problems in gravitational-wave detection over a wide range of frequencies.

In the first part of this work, low frequency gravitational-wave detection is considered using pulsar timing arrays (PTAs). PTAs are a promising tool for probing the universe through gravitational radiation. Supermassive black hole binaries (SMBHBs), cosmic strings, relic gravitational waves from inflation, and first order phase transitions in …


Searching For Gravitational Waves Using Pulsar Timing Arrays, Justin Ellis Aug 2014

Searching For Gravitational Waves Using Pulsar Timing Arrays, Justin Ellis

Theses and Dissertations

Gravitational Waves (GWs) are tiny ripples in the fabric of spacetime predicted by Einstein's theory of General Relativity. Pulsar timing arrays (PTAs) offer a unique opportunity to detect low frequency GWs in the near future. Such a detection would be complementary to both LISA and LIGO GW efforts. In this frequency band, the expected source of GWs are Supermassive Black Hole Binaries (SMBHBs) that will most likely form an ensemble creating a stochastic GW background with possibly a few nearby/massive sources that will be individually resolvable. A direct detection of GWs will open a new window into the fields of …


Introduction To Ligo And An Experiment Regarding The Quality Factor Of Crystalline Silicon, Edward Taylor Jun 2014

Introduction To Ligo And An Experiment Regarding The Quality Factor Of Crystalline Silicon, Edward Taylor

Physics

Third generation LIGO detectors will be limited by thermal noise at a low frequency band where gravitational wave signals are expected to exist. A large contribution to thermal noise is caused by internal friction of the mirror and suspension elements. In order to meet the quantum mechanical sensitivity limits of the detector, it will be necessary to further push down the contribution of thermal noise. Future detectors will require new materials with extremely high mechanical quality. Silicon at cryogenic temperatures shows the promise to provide the required mechanical quality due to its vanishing expansion coefficient at 120 K. The fluctuation …


Beyond The Standard Model: Lhc Phenomenology, Cosmology From Post-Inflationary Sources, And Dark Matter Physics, Brian J. Vlcek Dec 2013

Beyond The Standard Model: Lhc Phenomenology, Cosmology From Post-Inflationary Sources, And Dark Matter Physics, Brian J. Vlcek

Theses and Dissertations

It is the goal of this dissertation to demonstrate that beyond the standard model, certain theories exist which solve conflicts between observation and theory -- conflicts such as massive neutrinos, dark matter, unstable Higgs vacuum, and recent Planck observations of excess relativistic degrees of freedom in the early universe. Theories explored include a D-brane inspired construct of U(3) × Sp(1) × U(1) × U(1) extension of the standard model, in which we demonstrate several possible observables that may be detected at the LHC, and an ability to stabilize the Higgs mechanism. The extended model can also explain recent Planck data …


The Neutron-Star Equation Of State And Gravitational Waves From Compact Binaries, Benjamin David Lackey Aug 2012

The Neutron-Star Equation Of State And Gravitational Waves From Compact Binaries, Benjamin David Lackey

Theses and Dissertations

The equation of state (EOS) of matter above nuclear density is currently uncertain by almost an order of magnitude. Fortunately, neutron stars (NS) provide an ideal laboratory for studying high density matter. In order to systematize the study of the EOS from NS observations, we introduce a parametrized high-density EOS that accurately fits theoretical candidate EOSs. We then determine the ability of several recent and near-future electromagnetic observations to constrain the parameter space of our EOS. Recent observations include measurements of masses, gravitational redshift, and spin period, and we find that high mass observations are the most useful at constraining …