Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Physics Faculty Publications and Presentations

Boise State University

Cosmology

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Buzzard To Cardinal: Improved Mock Catalogs For Large Galaxy Surveys, Chun-Hao To, Joseph Derose, Risa H. Wechsler, Eli Rykoff, Hao-Yi Wu, Susmita Adhikari, Elisabeth Krause, Eduardo Rozo, David H. Weinberg Jan 2024

Buzzard To Cardinal: Improved Mock Catalogs For Large Galaxy Surveys, Chun-Hao To, Joseph Derose, Risa H. Wechsler, Eli Rykoff, Hao-Yi Wu, Susmita Adhikari, Elisabeth Krause, Eduardo Rozo, David H. Weinberg

Physics Faculty Publications and Presentations

We present the Cardinal mock galaxy catalogs, a new version of the Buzzard simulation that has been updated to support ongoing and future cosmological surveys, including the Dark Energy Survey (DES), DESI, and LSST. These catalogs are based on a one-quarter sky simulation populated with galaxies out to a redshift of z = 2.35 to a depth of mr = 27. Compared to the Buzzard mocks, the Cardinal mocks include an updated subhalo abundance matching model that considers orphan galaxies and includes mass-dependent scatter between galaxy luminosity and halo properties. This model can simultaneously fit galaxy clustering and group–galaxy …


Estimates For The Number Of Visible Galaxy-Spanning Civilizations And The Cosmological Expansion Of Life, S. Jay Olson Apr 2017

Estimates For The Number Of Visible Galaxy-Spanning Civilizations And The Cosmological Expansion Of Life, S. Jay Olson

Physics Faculty Publications and Presentations

If advanced civilizations appear in the universe with an ability and desire to expand, the entire universe can become saturated with life on a short timescale, even if such expanders appear rarely. Our presence in an apparently untouched Milky Way thus constrains the appearance rate of galaxyspanning Kardashev type III (K3) civilizations, if it is assumed that some fraction of K3 civilizations will continue their expansion at intergalactic distances. We use this constraint to estimate the appearance rate of K3 civilizations for 81 cosmological scenarios by specifying the extent to which humanity is a statistical outlier. We find that in …


Homogeneous Cosmology With Aggressively Expanding Civilizations, S. Jay Olson Nov 2015

Homogeneous Cosmology With Aggressively Expanding Civilizations, S. Jay Olson

Physics Faculty Publications and Presentations

In the context of a homogeneous Universe, we note that the appearance of aggressively expanding advanced life is geometrically similar to the process of nucleation and bubble growth in a first-order cosmological phase transition. We exploit this similarity to describe the dynamics of life saturating the Universe on a cosmic scale, adapting the phase transition model to incorporate probability distributions of expansion and resource consumption strategies. Through a series of numerical solutions spanning several orders of magnitude in the input assumption parameters, the resulting cosmological model is used to address basic questions related to the intergalactic spreading of life, dealing …