Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 34

Full-Text Articles in Physics

An Analysis Of The Optimal Mix Of Global Energy Resources And The Potential Need For Geoengineering Using The Ceagom Model, John George Anasis, M. A. K. Khalil, George G. Lendaris, Christopher L. Butenhoff, Randall Bluffstone Oct 2017

An Analysis Of The Optimal Mix Of Global Energy Resources And The Potential Need For Geoengineering Using The Ceagom Model, John George Anasis, M. A. K. Khalil, George G. Lendaris, Christopher L. Butenhoff, Randall Bluffstone

Systems Science Faculty Publications and Presentations

Humanity faces tremendous challenges as a result of anthropogenic climate change caused by greenhouse gas emissions. The mix of resources deployed in order to meet the energy needs of a growing global population is key to addressing the climate change issue. The goal of this research is to examine the optimal mix of energy resources that should be deployed to meet a forecast global energy demand while still meeting desired climate targets. The research includes the unique feature of examining the role that geoengineering can play in this optimization. The results show that some form of geoengineering is likely to …


The Effect Of Plasma On Graphene Quality In An Inductively Couple Plasma Chemical Vapor Deposition Reactor, Brendan Coyne May 2017

The Effect Of Plasma On Graphene Quality In An Inductively Couple Plasma Chemical Vapor Deposition Reactor, Brendan Coyne

Undergraduate Research & Mentoring Program

Despite continued interest in research and application development, full scale graphene production is still limited by many factors including prohibitively high growth temperature requirements. Extremely high quality graphene growth is possible at high temperatures using chemical vapor deposition (CVD). Use of an inductively coupled plasma chemical vapor deposition (ICP CVD) reactor with the benefit of precursor gas decomposition through plasma generation, may provide possibility to reduce growth temperature. Herein, we report plasma’s effects on graphene growth by comparing growths of increasing power supplied to plasma generation and changes in precursor gas ratios. Plasma composition was characterized by ultraviolet and visible …


Remote Measurements Of Tides And River Slope Using An Airborne Lidar Instrument, Austin S. Hudson, Stefan A. Talke, Ruth Branch, Chris Chickadel, Gordon Farquharson, Andrew Jessup Apr 2017

Remote Measurements Of Tides And River Slope Using An Airborne Lidar Instrument, Austin S. Hudson, Stefan A. Talke, Ruth Branch, Chris Chickadel, Gordon Farquharson, Andrew Jessup

Civil and Environmental Engineering Faculty Publications and Presentations

Tides and river slope are fundamental characteristics of estuaries, but they are usually undersampled due to deficiencies in the spatial coverage of water level measurements. This study aims to address this issue by investigating the use of airborne lidar measurements to study tidal statistics and river slope in the Columbia River estuary. Eight plane transects over a 12-h period yield at least eight independent measurements of water level at 2.5-km increments over a 65-km stretch of the estuary. These data are fit to a sinusoidal curve and the results are compared to seven in situ gauges. In situ– and lidar-based …


Puddle Jumping: Spontaneous Ejection Of Large Liquid Droplets From Hydrophobic Surfaces During Drop Tower Tests, Babek Attari, Mark M. Weislogel, Andrew Paul Wollman, Yongkang Chen, Trevor Snyder Oct 2016

Puddle Jumping: Spontaneous Ejection Of Large Liquid Droplets From Hydrophobic Surfaces During Drop Tower Tests, Babek Attari, Mark M. Weislogel, Andrew Paul Wollman, Yongkang Chen, Trevor Snyder

Mechanical and Materials Engineering Faculty Publications and Presentations

Large droplets and puddles jump spontaneously from sufficiently hydrophobicsurfaces during routine drop tower tests. The simple low-cost passive mechanism can in turn be used as an experimental device to investigate dynamic droplet phenomena for drops up to 104 times larger than their normal terrestrial counterparts. We provide and/or confirm quick and qualitative design guides for such “drop shooters” as employed in drop tower tests including relationships to predict droplet ejection durations and velocities as functions of drop volume, surface texture, surface contour, wettability pattern, and fluid properties including contact angle. The latter is determined via profile image comparisons with numerical …


More Investigations In Capillary Fluidics Using A Drop Tower, Andrew Paul Wollman, Mark M. Weislogel, Brentley M. Wiles, Donald Pettit, Trevor Snyder Mar 2016

More Investigations In Capillary Fluidics Using A Drop Tower, Andrew Paul Wollman, Mark M. Weislogel, Brentley M. Wiles, Donald Pettit, Trevor Snyder

Mechanical and Materials Engineering Faculty Publications and Presentations

A variety of contemplative demonstrations concerning intermediate-to-large length scale capillary fluidic phenomena were made possible by the brief weightless environment of a drop tower (Wollman and Weislogel in Exp Fluids 54(4):1, 2013). In that work, capillarity-driven flows leading to unique spontaneous droplet ejections, bubble ingestions, and multiphase flows were introduced and discussed. Such efforts are continued herein. The spontaneous droplet ejection phenomena (auto-ejection) is reviewed and demonstrated on earth as well as aboard the International Space Station. This technique is then applied to novel low-g droplet combustion where soot tube structures are created in the wakes of burning drops. …


A Novel Methodology For Spatial Damage Detection And Imaging Using A Distributed Carbon Nanotube-Based Composite Sensor Combined With Electrical Impedance Tomography, Hongbo Dai, Gerard J. Gallo, Thomas Schumacher, Erik T. Thostenson Mar 2016

A Novel Methodology For Spatial Damage Detection And Imaging Using A Distributed Carbon Nanotube-Based Composite Sensor Combined With Electrical Impedance Tomography, Hongbo Dai, Gerard J. Gallo, Thomas Schumacher, Erik T. Thostenson

Civil and Environmental Engineering Faculty Publications and Presentations

This paper describes a novel non-destructive evaluation methodology for imaging of damage in composite materials using the electrical impedance tomography (EIT) technique applied to a distributed carbon nanotube-based sensor. The sensor consists of a nonwoven aramid fabric, which was first coated with nanotubes using a solution casting approach and then infused with epoxy resin through the vacuum assisted resin transfer molding technique. Finally, this composite sensor is cured to become a mechanically-robust, electromechanically-sensitive, and highly customizable distributed two-dimensional sensor which can be adhered to virtually any substrate. By assuming that damage on the sensor directly affects its conductivity, a difference …


Complex Capillary Fluidic Phenomena For Passive Control Of Liquids In Low-Gravity Environments, Logan Torres Jan 2016

Complex Capillary Fluidic Phenomena For Passive Control Of Liquids In Low-Gravity Environments, Logan Torres

Undergraduate Research & Mentoring Program

In an effort to further apply the recent results of puddle jumping research, we seek to expand the oblique droplet impact studies of others by exploiting large liquid droplets in the near weightless environment of a drop tower. By using the spontaneous puddle jump mechanism, droplets of volumes 1 mL ≤ V ≤ 3 mL with corresponding Weber numbers of We ≈ 1 are impinged on surfaces inclined in the range 40° ≤ α ≤ 80° (measured from the horizontal plane). Impact surface wetting characteristics exhibit static contact angles θstatic = 165 ± 5°. All impacts result in complete rebound. …


Prussian Green: A High Rate Capacity Cathode For Potassium Ion Batteries, Prasanna Pradigi, Joseph Thiebes, Mitchell Swan, Gary Goncher, David Evans, Raj Solanki Mar 2015

Prussian Green: A High Rate Capacity Cathode For Potassium Ion Batteries, Prasanna Pradigi, Joseph Thiebes, Mitchell Swan, Gary Goncher, David Evans, Raj Solanki

Physics Faculty Publications and Presentations

The influence of the precursors, namely potassium ferrocyanide and potassium ferricyanide on the particles sizes of Prussian Blue (PB) and Prussian Green (PG), under identical reaction conditions have been investigated. It was found that the particle sizes influence the gravimetric capacity utilization of these materials as cathodes for aqueous potassium (K+ ) ion batteries. The PG particle sizes were on the order of 50-75 nm, whereas PB particles size were on the order of 2-10 microns. The PG cathodes demonstrated a reversible capacity of 121.4 mAhr/g, with a coulombic efficiency of 98.7% compared to PB cathodes which demonstrated 53.8 …


3d Printing Of Crystallographic Models And Open Access Databases, Werner Kaminsky, Trevor J. Snyder, Peter Moeck Jan 2014

3d Printing Of Crystallographic Models And Open Access Databases, Werner Kaminsky, Trevor J. Snyder, Peter Moeck

Physics Faculty Publications and Presentations

Provides a brief overview of opportunities for crystallography allowed by the recent developments in 3D printing technology. in combination with open access databases.


3d Printing Of Crystallographic Models For Interdisciplinary College Education, Peter Moeck, Werner Kaminsky, Trevor J. Snyder Jan 2014

3d Printing Of Crystallographic Models For Interdisciplinary College Education, Peter Moeck, Werner Kaminsky, Trevor J. Snyder

Physics Faculty Publications and Presentations

Provides a brief overview of the Crystallography Open Database, and how advances in 3D printing have created opportunities in teaching of college level crystallography courses.


3d Printing & Open Access Databases For Crystallographic College Education, Peter Moeck, Jennifer Stone-Sundberg, Trevor J. Snyder, Werner Kaminsky, Saulius Grazulis, International Advisory Board Of The Crystallography Open Database Jan 2014

3d Printing & Open Access Databases For Crystallographic College Education, Peter Moeck, Jennifer Stone-Sundberg, Trevor J. Snyder, Werner Kaminsky, Saulius Grazulis, International Advisory Board Of The Crystallography Open Database

Physics Faculty Publications and Presentations

Presentation gives an overview of available open access databases of crystals and crystal structures, as well as discussions of how newly developed 3D printing technologies can be used to teach crystallography at the college level. Offers advice regarding conversion of crystallographic information files to 3D printing files, and shares news from the 3D printing of crystallographic models community.


Zno Nanoneedle/H2o Solid-Liquid Heterojunction-Based Self-Powered Ultraviolet Detector, Qinghao Li, Lin Wei, Yanru Xie, Kai Zhang, Lei Liu, Dapeng Zhu, Jun Jiao, Yanxue Chen, Shishen Yan, Guolei Liu, Liangmo Mei Oct 2013

Zno Nanoneedle/H2o Solid-Liquid Heterojunction-Based Self-Powered Ultraviolet Detector, Qinghao Li, Lin Wei, Yanru Xie, Kai Zhang, Lei Liu, Dapeng Zhu, Jun Jiao, Yanxue Chen, Shishen Yan, Guolei Liu, Liangmo Mei

Physics Faculty Publications and Presentations

ZnO nanoneedle arrays were grown vertically on a fluorine-doped tin oxide-coated glass by hydrothermal method at a relatively low temperature. A self-powered photoelectrochemical cell-type UV detector was fabricated using the ZnO nanoneedles as the active photoanode and H2O as the electrolyte. This solid-liquid heterojunction offers an enlarged ZnO/water contact area and a direct pathway for electron transport simultaneously. By connecting this UV photodetector to an ammeter, the intensity of UV light can be quantified using the output short-circuit photocurrent without a power source. High photosensitivity, excellent spectral selectivity, and fast photoresponse at zero bias are observed in this UV detector. …


A Mean Curvature Model For Capillary Flows In Asymmetric Containers And Conduits, Yongkang Chen, Noël Tavan, Mark M. Weislogel Aug 2012

A Mean Curvature Model For Capillary Flows In Asymmetric Containers And Conduits, Yongkang Chen, Noël Tavan, Mark M. Weislogel

Mechanical and Materials Engineering Faculty Publications and Presentations

Capillarity-driven flows resulting from critical geometric wetting criterion are observed to yield significant shifts of the bulk fluid from one side of the container to the other during "zero gravity" experiments. For wetting fluids, such bulk shift flows consist of advancing and receding menisci sometimes separated by secondary capillary flows such as rivulet-like flows along gaps. Here we study the mean curvature of an advancing meniscus in hopes of approximating a critical boundary condition for fluid dynamics solutions. It is found that the bulk shift flows behave as if the bulk menisci are either “connected” or "disconnected." For the connected …


Identification Of The Biogenic Compounds Responsible For Size-Dependent Nanoparticle Growth, Paul M. Winkler, John Ortega, Thomas Karl, Luca Cappellin, Hans R. Friedli, Kelley Barsanti, Peter H. Mcmurry, James N. Smith Jan 2012

Identification Of The Biogenic Compounds Responsible For Size-Dependent Nanoparticle Growth, Paul M. Winkler, John Ortega, Thomas Karl, Luca Cappellin, Hans R. Friedli, Kelley Barsanti, Peter H. Mcmurry, James N. Smith

Civil and Environmental Engineering Faculty Publications and Presentations

The probability that freshly nucleated nanoparticles can survive to become cloud condensation nuclei is highly sensitive to particle growth rates. Much of the growth of newly formed ambient nanoparticles can be attributed to oxidized organic vapors originating from biogenic precursor gases. In this study we investigated the chemical composition of size-selected biogenic nanoparticles in the size range from 10 to 40 nm. Particles were formed in a flow tube reactor by ozonolysis ofα-pinene and analyzed with a Thermal Desorption Chemical Ionization Mass Spectrometer. While we found similar composition in 10 and 20 nm particles, the relative amounts of …


Crystallite Phase And Orientation Determinations Of (Mn, Ga) As/Gaas-Crystallites Using Analyzed (Precession) Electron Diffraction Patterns, Ines Häusler, Stavros Nicolopoulos, Edgar F. Rauch, K. Volz, Peter Moeck Jan 2011

Crystallite Phase And Orientation Determinations Of (Mn, Ga) As/Gaas-Crystallites Using Analyzed (Precession) Electron Diffraction Patterns, Ines Häusler, Stavros Nicolopoulos, Edgar F. Rauch, K. Volz, Peter Moeck

Physics Faculty Publications and Presentations

Outline of the presentation:

1. Material system: (Mn,Ga)As/GaAs-crystallites

2. Structure analysis using Nano-beam Diffraction (NBD) Precession Electron Diffraction Technique (PED) --> Structure type I + II

3. Phase and orientation mapping using ASTAR

4. Conclusion


Automated Nanocrystal Orientation And Phase Mapping In The Transmission Electron Microscope On The Basis Of Precession Electron Diffraction, Edgar F. Rauch, Joaquin Portillo, Stavros Nicolopoulos, Daniel Bultreys, Sergei Rouvimov, Peter Moeck Mar 2010

Automated Nanocrystal Orientation And Phase Mapping In The Transmission Electron Microscope On The Basis Of Precession Electron Diffraction, Edgar F. Rauch, Joaquin Portillo, Stavros Nicolopoulos, Daniel Bultreys, Sergei Rouvimov, Peter Moeck

Physics Faculty Publications and Presentations

An automated technique for the mapping of nanocrystal phases and orientations in a transmission electron microscope is described. It is primarily based on the projected reciprocal lattice geometry that is extracted from electron diffraction spot patterns. Precession electron diffraction patterns are especially useful for this purpose. The required hardware allows for a scanning-precession movement of the primary electron beam on the crystalline sample and can be interfaced to any older or newer mid-voltage transmission electron microscope (TEM). Experimentally obtained crystal phase and orientation maps are shown for a variety of samples. Comprehensive commercial and open-access crystallographic databases may be used …


Automated Crystal Phase And Orientation Mapping Of Nanocrystals In A Transmission Electron Microscope, Peter Moeck, Sergei Rouvimov, Edgar F. Rauch, Stavros Nicolopoulos May 2009

Automated Crystal Phase And Orientation Mapping Of Nanocrystals In A Transmission Electron Microscope, Peter Moeck, Sergei Rouvimov, Edgar F. Rauch, Stavros Nicolopoulos

Physics Faculty Publications and Presentations

An automated technique for the mapping of nanocrystal phases and orientations in a transmission electron microscope (TEM) is described. It is based on the projected reciprocal lattice geometry that is extracted from electron diffraction spot patterns. The required hardware allows for a scanning‐precession movement of the primary electron beam on the crystalline sample and can be interfaced to any newer or older TEM. The software that goes with this hardware is flexible in its intake of raw data so that it can also create orientation and phase maps of nanocrystal from high resolution TEM (HRTEM) images. When the nanocrystals possess …


Gravity Effects On Capillary Flows In Sharp Corners, Enrique Ramé, Mark M. Weislogel Apr 2009

Gravity Effects On Capillary Flows In Sharp Corners, Enrique Ramé, Mark M. Weislogel

Mechanical and Materials Engineering Faculty Publications and Presentations

We analyze the effect of gravity on capillary flows in sharp corners. We consider gravity perpendicular and parallel to the channel axis. We analyze both steady and unsteady flows. In the steady analysis the main result is a closed form expression for the flow rate as a function of the two gravity components. Good agreement with steady experiments is offered as support of the model. The unsteady analysis is restricted to “small” values of the two gravity parameters and is accomplished using a similarity formulation. The similarity coefficients of the gravity corrections are fully determined by the coefficients of the …


Nanometrology Device Standards For Scanning Probe Mmicroscopes And Processes For Their Fabrication And Use, Peter Moeck Jan 2009

Nanometrology Device Standards For Scanning Probe Mmicroscopes And Processes For Their Fabrication And Use, Peter Moeck

Physics Faculty Publications and Presentations

Nanometrology device standards and methods for fabricating and using such devices in conjunction With scanning probe microscopes are described. The fabrication methods comprise: (1) epitaxial growth that produces nanometer sized islands of knoWn morphology, structural, morphological and chemical stability in typical nanometrology environments, and large height-to-width nano-island aspect ratios, and (2) marking suitable crystallographic directions on the device for alignment With a scanning direction.


Crystallography Open Database – An Open-Access Collection Of Crystal Structures, Saulius Grazulis, Daniel Chateigner, Robert T. Downs, A. F. T. Yokochi, Miguel Quirós, Luca Lutterotti, Elena Manakova, Justas Butkus, Peter Moeck, Armel Le Bail Jan 2009

Crystallography Open Database – An Open-Access Collection Of Crystal Structures, Saulius Grazulis, Daniel Chateigner, Robert T. Downs, A. F. T. Yokochi, Miguel Quirós, Luca Lutterotti, Elena Manakova, Justas Butkus, Peter Moeck, Armel Le Bail

Physics Faculty Publications and Presentations

The Crystallography Open Database (COD), which is a project that aims to gather all available inorganic, metal–organic and small organic molecule structural data in one database, is described. The database adopts an openaccess model. The COD currently contains 80,000 entries in crystallographic information file format, with nearly full coverage of the International Union of Crystallography publications, and is growing in size and quality.


Precession Electron Diffraction And Its Advantages For Structural Fingerprinting In The Transmission Electron Microscope, Peter Moeck, Sergei Rouvimov Jan 2009

Precession Electron Diffraction And Its Advantages For Structural Fingerprinting In The Transmission Electron Microscope, Peter Moeck, Sergei Rouvimov

Physics Faculty Publications and Presentations

The foundations of precession electron diffraction in a transmission electron microscope are outlined. A brief illustration of the fact that laboratory-based powder X-ray diffraction fingerprinting is not feasible for nanocrystals is given. A procedure for structural fingerprinting of nanocrystals on the basis of structural data that can be extracted from precession electron diffraction spot patterns is proposed.


Electron Microscopy And Optical Characterization Of Cadmium Sulphide Nanocrystals Deposited On The Patterned Surface Of Diatom Biosilica, Timothy Gutu, Debra K. Gale, Clayton Jeffryes, Wei Wang, Chih-Hung Chang, Gregory L. Rorrer, Jun Jiao Jan 2009

Electron Microscopy And Optical Characterization Of Cadmium Sulphide Nanocrystals Deposited On The Patterned Surface Of Diatom Biosilica, Timothy Gutu, Debra K. Gale, Clayton Jeffryes, Wei Wang, Chih-Hung Chang, Gregory L. Rorrer, Jun Jiao

Physics Faculty Publications and Presentations

Intricately patterned biosilica obtained from the shell of unicellular algae called diatoms serve as novel templates for fabrication of optoelectronic nanostructures. In this study, the surface of diatom frustules that possessed hierarchical architecture ordered at the micro and nanoscale was coated with a nanostructured polycrystalline cadmium sulphide (CdS) thin film using a chemical bath deposition technique. The CdS thin film was composed of spherical nanoparticles with a diameter of about 75 nm. The CdS nanoparticle thin film imparted new photoluminescent properties to the intricately patterned diatom nanostructure. The imparted photoluminescent properties were dependent on the CdS coverage onto the frustules …


The Potential Contribution Of Organic Salts To New Particle Growth, Kelley Barsanti, Peter H. Mcmurry, J. N. Smith Jan 2009

The Potential Contribution Of Organic Salts To New Particle Growth, Kelley Barsanti, Peter H. Mcmurry, J. N. Smith

Civil and Environmental Engineering Faculty Publications and Presentations

Field and lab measurements suggest that low-molecular weight (MW) organic acids and bases exist in accumulation and nucleation mode particles, despite their relatively high pure-liquid vapor pressures. The mechanism(s) by which such compounds contribute to the mass growth of existing aerosol particles and newly formed particles has not been thoroughly explored. One mechanism by which low- MW compounds may contribute to new particle growth is through the formation of organic salts. In this paper we use thermodynamic modeling to explore the potential for organic salt formation by atmospherically relevant organic acids and bases for two system types: one in which …


A Better Nondimensionalization Scheme For Slender Laminar Flows: The Laplacian Operator Scaling Method, Mark M. Weislogel, Yongkang Chen, D. Bolleddula Sep 2008

A Better Nondimensionalization Scheme For Slender Laminar Flows: The Laplacian Operator Scaling Method, Mark M. Weislogel, Yongkang Chen, D. Bolleddula

Mechanical and Materials Engineering Faculty Publications and Presentations

A scaling of the two-dimensional Laplacian operator is demonstrated for certain solutions (at least) to Poisson’s equation. It succeeds by treating the operator as a single geometric scale entity. The belated and rather subtle method provides an efficient assessment of the geometrical dependence of the problem and is preferred when practicable to the hydraulic diameter or term-by-term scaling for slender fully developed laminar flows. The improved accuracy further reduces the reliance of problems on widely varying numerical data or cumbersome theoretical forms and improves the prospects of exact or approximate theoretical analysis. Simple example problems are briefly described that demonstrate …


Structural Identification Of Cubic Iron-Oxide Nanocrystal Mixtures: X-Ray Powder Diffraction Versus Quasi-Kinematic Transmission Electron Microscopy, Peter Moeck Mar 2008

Structural Identification Of Cubic Iron-Oxide Nanocrystal Mixtures: X-Ray Powder Diffraction Versus Quasi-Kinematic Transmission Electron Microscopy, Peter Moeck

Physics Faculty Publications and Presentations

Two novel (and proprietary) strategies for the structural identification of a nanocrystal from either a single high-resolution (HR) transmission electron microscopy (TEM) image or a single precession electron diffraction pattern are proposed and their advantages discussed in comparison to structural fingerprinting from powder X-ray diffraction patterns. Simulations for cubic magnetite and maghemite nanocrystals are used as examples.


New Particle Formation In The Front Range Of The Colorado Rocky Mountains, Micahel Boy, Thomas Karl, Andrew Turnipseed, Roy Lee Mauldin, Edward Kosciuch, James Greenberg, Jeff Rathbone, James Smith, Andreas Held, Kelley Barsanti, Alex Guenther Jan 2008

New Particle Formation In The Front Range Of The Colorado Rocky Mountains, Micahel Boy, Thomas Karl, Andrew Turnipseed, Roy Lee Mauldin, Edward Kosciuch, James Greenberg, Jeff Rathbone, James Smith, Andreas Held, Kelley Barsanti, Alex Guenther

Civil and Environmental Engineering Faculty Publications and Presentations

New particle formation is of interest because of its influence on the properties of aerosol population, and due to the possible contribution of newly formed particles to cloud condensation nuclei. Currently no conclusive evidence exists as to the mechanism or mechanisms of nucleation and subsequent particle growth. However, nucleation rates exhibit a clear dependence on ambient sulphuric acid concentrations and particle growth is often attributed to the condensation of organic vapours. A detailed study of new particle formation in the Front Range of the Colorado Rocky Mountains is presented here. Gas and particle measurement data for 32 days was analyzed …


Three-Dimensional Structure Of Cdx (X= Se, Te) Nanocrystals By Total X-Ray Diffraction, S. K. Pradhan, Z. T. Deng, F. Tang, Y. Ren, Peter Moeck, V. Petkov Jan 2007

Three-Dimensional Structure Of Cdx (X= Se, Te) Nanocrystals By Total X-Ray Diffraction, S. K. Pradhan, Z. T. Deng, F. Tang, Y. Ren, Peter Moeck, V. Petkov

Physics Faculty Publications and Presentations

The three-dimensional structure of oleic acid-capped CdSe and thiol-capped CdTe nanocrystals used as quantum dots has been determined by total synchrotron radiationx-ray diffraction and atomic pair distribution function analysis. Both CdSe and CdTe are found to exhibit the zinc-blende-type atomic ordering. It is only slightly distorted in CdSe implying the presence of nanosize domains and very heavily distorted in CdTe due to the presence of distinct core-shell regions. The results well demonstrate the great potential of the experimental approach and thus encourage its wider application in quantum dot research.


Capillary-Driven Flows Along Rounded Interior Corners, Yongkang Chen, Mark M. Weislogel, Cory L. Nardin Nov 2006

Capillary-Driven Flows Along Rounded Interior Corners, Yongkang Chen, Mark M. Weislogel, Cory L. Nardin

Mechanical and Materials Engineering Faculty Publications and Presentations

The problem of low-gravity isothermal capillary flow along interior corners that are rounded is revisited analytically in this work. By careful selection of geometric length scales and through the introduction of a new geometric scaling parameter Tc, the Navier–Stokes equation is reduced to a convenient∼O(1) form for both analytic and numeric solutions for all values of corner half-angle α and corner roundedness ratio λ for perfectly wetting fluids. The scaling and analysis of the problem captures much of the intricate geometric dependence of the viscous resistance and significantly reduces the reliance on numerical data compared with several previous solution methods …


Transmission Electron Goniometry And Its Relation To Electron Tomography For Materials Science Apoplications, Peter Moeck, P. Fraundorf Nov 2006

Transmission Electron Goniometry And Its Relation To Electron Tomography For Materials Science Apoplications, Peter Moeck, P. Fraundorf

Physics Faculty Publications and Presentations

Aspects of transmission electron goniometry are discussed. Combined with high resolution phase contrast transmission electron microscopy (HRTEM) and atomic resolution scanning TEM (STEM) in the atomic number contrast (Z-STEM) or the phase contrast bright field mode, transmission electron goniometry offers the opportunity to develop dedicated methods for the crystallographic characterization of nanocrystals in three dimensions. The relationship between transmission electron goniometry and electron tomography for materials science applications is briefly discussed. Internet based java applets that facilitate the application of transmission electron goniometry for cubic crystals with calibrated tilt-rotation and double-tilt specimen holders/goniometers are mentioned. The so called cubic-minimalistic tilt …


Image-Based Nanocrystallography With Online Database Support, Peter Moeck, Ján Zahornadsky, Boris Dusek Jan 2006

Image-Based Nanocrystallography With Online Database Support, Peter Moeck, Ján Zahornadsky, Boris Dusek

Physics Faculty Publications and Presentations

The crystallographic phase and morphology of many materials change with the crystal size so that new needs arise to determine the crystallography of nanocrystals. Direct space high-resolution phase-contrast transmission electron microscopy (HRTEM) and atomic resolution scanning TEM (STEM) when combined with tools for image-based nanocrystallography in two (2D) and three (3D) dimensions possess the capacity to meet these needs. After a concise discussion of lattice-fringe visibility spheres and maps, this paper discusses lattice-fringe fingerprinting in 2D and tilt protocol applications. On-line database developments at Portland State University (PSU) that support image-based nanocrystallography are also mentioned.